1、光谱分辨率光谱分辨率spectral resolution定义1:遥感器能分辨的最小波长间隔,是遥感器的性能指标。
遥感器的波段划分得越细,光谱的分辨率就越高,遥感影像区分不同地物的能力越强。
定义2:多光谱遥感器接收目标辐射信号时所能分辨的最小波长间隔。
光谱分辨率指成像的波段范围,分得愈细,波段愈多,光谱分辨率就愈高,现在的技术可以达到5~6nm(纳米)量级,400多个波段。
细分光谱可以提高自动区分和识别目标性质和组成成分的能力。
传感器的波谱范围,一般来说识别某种波谱的范围窄,则相应光谱分辨率高。
举个例子:可以分辨红外、红橙黄绿青蓝紫紫外的传感器的光谱分辨率就比只能分辨红绿蓝的传感器的光谱分辨率高。
一般来说,传感器的波段数越多波段宽度越窄,地面物体的信息越容易区分和识别,针对性越强。
2、什么是高光谱,多光谱及超光谱高光谱成像是新一代光电检测技术,兴起于2O世纪8O年代,目前仍在迅猛发展巾。
高光谱成像是相对多光谱成像而言,通过高光谱成像方法获得的高光谱图像与通过多光谱成像获取的多光谱图像相比具有更丰富的图像和光谱信息。
如果根据传感器的光谱分辨率对光谱成像技术进行分类,光谱成像技术一般可分成3类。
(1)多光谱成像——光谱分辨率在delta_lambda/lambda=0.1mm数量级,这样的传感器在可见光和近红外区域一般只有几个波段。
(2)高光谱成像——光谱分辨率在delta_lambda/lambda=0.01mm数量级,这样的传感器在可见光和近红外区域有几十到数百个波段,光谱分辨率可达nm 级。
(3)超光谱成像——光谱分辨率在delta_lambda/lambda =O.001mm=1nm数量级,这样的传感器在可见光和近红外区域可达数千个波段。
众所周知,光谱分析是自然科学中一种重要的研究手段,光谱技术能检测到被测物体的物理结构、化学成分等指标。
光谱评价是基于点测量,而图像测量是基于空间特性变化,两者各有其优缺点。
因此,可以说光谱成像技术是光谱分析技术和图像分析技术发展的必然结果,是二者完美结合的产物。
光谱成像技术不仅具有光谱分辨能力,还具有图像分辨能力,利用光谱成像技术不仅可以对待检测物体进行定性和定量分析,而且还能进对其进行定位分析。
高光谱成像系统的主要工作部件是成像光谱仪,它是一种新型传感器,2O 世纪8O年代初正式开始研制,研制这类仪器的目的是为获取大量窄波段连续光谱图像数据,使每个像元具有几乎连续的光谱数据。
它是一系列光波波长处的光学图像,通常包含数十到数百个波段,光谱分辨率一般为1~l0nm。
由于高光谱成像所获得的高光谱图像能对图像中的每个像素提供一条几乎连续的光谱曲线,其在待测物上获得空间信息的同时又能获得比多光谱更为丰富光谱数据信息,这些数据信息可用来生成复杂模型,来进行判别、分类、识别图像中的材料。
通过高光谱成像获取待测物的高光谱图像包含了待测物的丰富的空间、光谱和辐射三重信息。
这些信息不仅表现了地物空间分布的影像特征,同时也可能以其中某一像元或像元组为目标获取它们的辐射强度以及光谱特征。
影像、辐射与光谱是高光谱图像中的3个重要特征,这3个特征的有机结合就是高光谱图像。
高光谱图像数据为数据立方体(cube)。
通常图像像素的横坐标和纵坐标分别用x和Y来表示,光谱的波长信息以(Z即轴)表示。
该数据立方体由沿着光谱轴的以一定光谱分辨率间隔的连续二维图像组成。
(Z轴的每一层对应一定窄带波长的光谱图像)。
3、多光谱、高光谱、超光谱辨识一.技术历史背景早在20世纪60年代(1960s)人造地球卫星围绕地球获取地球的图片资料时,成像就成为研究地球的有利工具。
在传统的成像技术中,人们就知道黑白图像的灰度级别代表了光学特性的差异因而可用于辨别不同的材料,在此基础上,成像技术有了更高的发展,对地球成像时,选择一些颜色的滤波片成像对于提高对特殊农作物、研究大气、海洋、土壤等的辨别能力大有裨益。
这就是人类最早的多光谱技术(Multispectral imaging)它最早出现在LandSat卫星上。
这些最早的星载图像传感器(例如,LandSat卫星上的Thematic Mapper和法国SPOT卫星上的相机)以离散的几种颜色(或者几个波段)对地球成像,就是人们常说的多光谱成像。
既然多光谱成像(Multispectral Imaging)仅仅以几个连续的光谱波带成像对于我们研究环境就如此有用,为什么不把波带数拓展更多,把光谱分辨率拓展更细呢?因此,用于遥感目的的高光谱成像技术(Hyperspectral Imaging)在20世纪80年代初期诞生了,它最早是机载的成像光谱仪(Airborne ImagingSpectrometer),如今已拓展到先进的可见和红外成像光谱仪(AVIRIS),这两种最早都诞生在NASA的JPL中心(NASA:美国国家航天航空管理局)。
从多光谱到高光谱遥感技术的前进也需要仪器的发展。
虽然对地球成像而言七个非连续的波段称不上什么光谱成像技术,但是如果使用200个连续的波段,每个波段的光谱分辨率在10nm左右,谁都不会否认这是光谱成像技术。
而且人类对更好更高的追求从来都没停止过,现在光谱成像技术已经发展到超光谱时代(Ultraspectral Imaging),比如,它使用的是空间发射光谱仪(Atmospheric Emission Spectrometer,AES),这个超光谱成像仪在红外波段就能产生数千个波带,分辨率高达1nm。
全球第一个星载高光谱成像器于1997年在NASA随着Lewis卫星发射升空,它包含了384个波段涵盖了400-2500nm波段,不幸的是这颗卫星控制出现问题,失去了动力,升空一个月后就偏离了轨道。
随后,一些实验性的机载高光谱成像器在NASA的DOD(Department of Defense)得到了重点研发,这些机载的高光谱成像系统涵盖了VNIR/SWIR和MLIR(3-5微米),LWIR(又称热红外相机,适应波段8-12微米)。
目前,成像光谱技术已经走出了最初的军事应用的局限,在国土资源调查,精准农业生产和研究,农作物分选和检测等多种应用领域发挥不可替代的作用。
基于成像光谱技术波长范围为400-1000nm, 900-1700nm, 1100-2500nm,3000-15000nm的各种成像光谱仪和高光谱成像器也应运而生。
但是由于军事应用的潜在性依然存在,国外先进成像光谱仪国家对成像光谱仪的对华出口管制非常严格,例如,红外成像光谱仪是百分之百对华禁运,其他波段的成像光谱仪也需要我国用户提供商务部签发的“End User and End Use Statement”,但是,尽管如此,能否进口到中国来依然存在许多变数。
为什么国外多这种技术对华如此高级别地限制,高光谱技术到底“高”在那些方面,高光谱成像光谱仪如何实现高光谱数据的获取?针对诸多技术细节,天津菲林斯光电仪器公司作为国内专业的成像光谱技术提供者,发挥专业技术优势,从纯技术的角度为广大用户和读者提供一份绝密级别的内部参考资料,这份资料仅供广大用户之间阅读参考,切勿随意散发。
二.技术综述成像光谱(高光谱)数据是图谱合一的海量数据源,它同时包含了图像信息和光谱信息,能够给出各个波段上每个像素的光谱强度数据,而且光谱分辨率很高,这样,这种数据在一些对光谱和图像和光谱分辨率要求较高的领域就显示出无可替代的作用。
例如,矿产探测,高光谱数据由于较高的光谱分辨率就可以帮助人们通过光谱分析的的办法找到一些隐蔽性极强的稀有矿产,而在以前,普通的光谱技术是无法发现这些矿产的。
高光谱成像的数据是一叠连续多个波段成像获得的景色或样品的图像,就是俗称的图像立方体(Image cube)。
这个图像立方具有两个空间维度(X和Y),第三维为每个像素的波长或辐射强度。
那么,如何获得这种价值连城的高光谱图像立方体呢?它是通过成像光谱仪获取的,但是成像光谱仪(或高光谱成像系统)本身是一种获取图像的传感器,它获取的只是光谱信息,一般地,成像光谱仪器及其配套软件是不提供该图像立方体的显示功能的,您需要把成像光谱仪获取的数据导入到ENVI软件中才能显出如此漂亮的图片资料。
在深入该话题的探讨之前,我们首先明确高光谱遥感的三个空间级别:航天级别:星载遥感(planet-borne)距离地面150公里以上。
这是一种典型的高光谱遥感应用,也是高光谱技术(成像光谱技术)的最初应用,它是把成像光谱仪安装于卫星上,对地球目标进行高光谱遥感探测。
工作距离通常是几万公里以上,我国的神舟七号飞船就成安装类似的成像光谱仪。
使用的成像光谱仪非常庞大,每次实验的费用非常巨大。
航空级别:机载遥感(Airborne)距离地面100-到十多公里的距离。
使用小型飞机或无人机作为光谱仪的搭载平台,是目前主要的遥感成像工作方法。
它使用的成像光谱仪体积小。
但是要获得比较好的实验结果并不容易,需要精确的GPS和惯导定位,高性能的计算机和高频率的拍摄速度。
地面级别:这种应用的主要领域是地面或高度不高于50m的空间成像。
它不再是像前两种那样动态的成像,而是通常静态成像,比较常见的是农业应用和实验室高光谱成像。
但是也有把推扫式成像光谱仪放置在地面,配备旋转位移台或线形位移台,以产生两种效果:成像光谱仪运动而待测物目标静止,或者成像光谱仪静止而待测目标运动的效果。
目前,实际科研过程中,常用的是航空级别(动态成像)和地面级别的高光谱遥感成像(静态成像)。
现在,可以这样认为:动态的测量应用就需要使用推扫式成像方式获取图像,静态测量应用需要使用波长扫描式获取高光谱图像。
这两者有何区别呢?下图将有利于您理解该问题。
4、众所周知,光谱分析是自然科学中一种重要的研究手段,光谱技术能检测到被测物体的物理结构、化学成分等指标。
光谱评价是基于点测量,而图像测量是基于空间特性变化,两者各有其优缺点。
因此,可以说光谱成像技术是光谱分析技术和图像分析技术发展的必然结果,是二者完美结合的产物。
光谱成像技术不仅具有光谱分辨能力,还具有图像分辨能力,利用光谱成像技术不仅可以对待检测物体进行定性和定量分析,而且还能进对其进行定位分析。
高光谱成像系统的主要工作部件是成像光谱仪,它是一种新型传感器,2O 世纪8O年代初正式开始研制,研制这类仪器的目的是为获取大量窄波段连续光谱图像数据,使每个像元具有几乎连续的光谱数据。
它是一系列光波波长处的光学图像,通常包含数十到数百个波段,光谱分辨率一般为1~l0nm。
由于高光谱成像所获得的高光谱图像能对图像中的每个像素提供一条几乎连续的光谱曲线,其在待测物上获得空间信息的同时又能获得比多光谱更为丰富光谱数据信息,这些数据信息可用来生成复杂模型,来进行判别、分类、识别图像中的材料。