双膛窑、套筒窑、弗卡斯窑窑型对比石灰窑介绍—并流蓄热式双膛竖窑套筒式竖窑并流蓄热式双膛竖窑 套筒式竖窑 弗卡斯窑并流蓄热式双膛竖窑——石灰石煅烧竖窑炉总览(1)石灰石煅烧竖窑炉总览(1)并流蓄热式双膛竖窑目前国外用于煅烧细粒石灰的竖窑主要窑型为瑞士麦尔兹窑炉公司设计建造的并流蓄热式双膛竖窑,该窑用于煅烧20~40 mm小粒度石灰石,可以充分利用目前我国石灰石矿许多丢弃的细粒石灰石,为我国石灰石矿的资源综合利用开辟了新途径。
1 并流蓄热式双膛竖窑的主要特点(1)石灰煅烧均匀,活性度好。
在供给合格石灰石和燃料的前提下,活性石灰的活性度达到350ml,残余CO2 气体含量低,一般不超过2.5% ,且不产生过烧石灰。
(2)热效率高。
用于石灰石分解耗热量占总耗热量的百分比在各类窑形中为最高,一般可达83%以上,单位产品耗热量低,一般在3 555~3 764 kJ /kg之间波动。
(3)相比回转窑,占地面积小,基建投资低。
(4)排出的烟气温度低,一般为70~130℃,易于净化除尘处理,有利于解决环境污染问题。
(5)能够煅烧20~40 mm小粒度石灰石,可充分利用我国现有废弃的石灰石资源。
3 并流蓄热式双膛竖窑的工艺过程并流蓄热式双膛竖窑有两个窑身,窑身的上部有换向系统,用于交替轮换使用两个窑身,在窑身煅烧带的下部设有彼此连通的通道。
煤粉喷枪安装在预热带,并埋设在石灰石中。
生产操作时,每隔12 min变换1次窑身功能,即每个窑身每隔1个周期加热1次。
采用单斗提升机向竖窑加料,每变换1次窑身,单斗提升机向两个窑身分别加入1斗石灰石。
单斗提升机前设有带电子秤的称量料斗,以便精确称量每斗石灰石。
采用罗茨鼓风机交替从两个窑身上部送入煤粉,通过喷枪将煤粉均匀地分布在整个窑的断面上。
采用罗茨鼓风机将燃烧用的空气从竖窑顶部送入窑内,经预热带进入煅烧带与煤粉混合,使煤粉在煅烧带内燃烧,火焰与物料并流使物料得以煅烧。
在煅烧带将石灰石煅烧后产生的废气,通过两个窑身的连接通道进入另一个窑身,与装入的石灰石料流相反向上流动,预热了另一个窑身内的石灰石。
煅烧完的石灰由窑身下部的卸料装置卸出,进入下部的卸料料斗。
由于竖窑窑内压力很高,这些料斗均采用液压操作的闸板密封。
在每个换向周期中,密封闸板定期打开,石灰便会落入下部受料斗中,然后经过振动给料机给入耐热皮带运输机上,再运往成品石灰筛进行筛分贮存。
竖窑上的大部分设备均采用液压操作,这些设备包括:回转加料器、窑顶关闭闸板、旋转料钟、废气换向闸板、称量料斗闸板、出料装置、出料料斗密封闸板、煤粉管道和空气管道的液压阀门、石灰石料位指示器等。
并流蓄热式双膛竖窑内石灰石料位的测量采用机械料位指示器。
竖窑设有12台罗茨鼓风机,其中3台用于提供助燃空气, 3台用于向窑内输送冷却空气, 1台另外备用提供燃烧空气或冷却空气, 3台用于冷却喷枪,2台用于将煤粉从称量料斗送至喷枪。
上述12台罗茨鼓风机中,有3台为变频调速交流电动机传动。
并流蓄热式双膛竖窑上安装有自动操作所需要的PLC控制装置,通过中央控制室的计算机显示设备的流程、各种闸板及闸阀的位置,并对操作中的错误之处发出报警信号、显示报警信息。
计算机可以显示各种技术数据及技术参数设定范围,如显示向窑内供给的燃料量和空气量、窑膛通道之间的温度、煤粉温度、废气和出窑石灰的温度、膛中系统压力、燃烧及冷却空气压力。
竖窑的PLC系统控制程序,能够自动开启和变换石灰石加热和装料的各个阶段的顺序和操作,并能保证煅烧好的石灰均匀出料。
由于这种并流蓄热式双膛竖窑具有先进的加料系统,可以避免物料偏析,并在竖窑的断面上能达到理想的石灰石分布状态。
该窑的特殊燃料分布系统能够保证整个窑断面上热量的均匀供给,同时改进竖窑冷却带的形状以适合小颗粒石灰石的特殊流动状态,这些措施保证并流蓄热式细粒石灰竖窑能够煅烧20~40 mm的小粒度石灰石,并且已经在意大利的部分石灰石矿得到了实际应用,取得了令人满意的效果。
套筒式竖窑——石灰石煅烧竖窑炉总览(2)套筒式竖窑1. 前言套筒式竖窑又名环形窑,起源于德国肯巴赫·威尔曼司特勒公司( BECKENBACHWARMESTELLE GMBH) ,世界上已有300 余座套筒式竖窑投入使用。
欧洲和日本用这种窑型较为普遍。
近几年来,我国也逐渐引入这种窑型,先后有5 座套筒式竖窑在梅钢、马钢、本钢等大型钢铁企业应用。
实践表明,套筒式竖窑设备简单,操作和维修方便,工作环境较好,产品质量优良,是一种很有发展前景的新型窑型。
2.套筒式竖窑的基本结构套筒式竖窑主要由窑体、上料装置、出料装置、燃烧室、换热器、喷射器以及风机系统等构成(见图1) 。
2. 1 窑体窑体由内、外筒组成。
外筒由普通钢板围成并衬以耐火材料。
内筒分上、下两个独立部分,上部为上内筒,下部为下内筒。
上下内筒由双层结构形成圆柱形钢板箱,钢板箱内可直接通入空气并能够对内筒进行连续冷却防止其高温变形。
箱体内外两侧砌有耐火砖。
内筒与外筒同心布置,形成一个环形空间,石灰石就在该环形区域内煅烧。
2. 2 燃烧室套筒式竖窑可使用多种燃料,如天然气、焦炉煤气、混合煤气、煤粉、重油等。
无论采用哪种燃料,其燃烧过程都是通过烧嘴在燃烧室内进行的。
燃烧室一般设置在窑体中部并分上、下两层,每层燃烧室的数目视竖窑大小而异(一般为3~7 个);同一层均匀布置,上、下两层错开布置。
每个燃烧室与内筒之间均由耐火砖砌筑而成的拱桥相连,燃烧产生的高温烟气通过拱桥下的空间进入石灰石料层。
2. 3 上料、出料系统套筒窑的上料装置由称量料斗、闸门、单斗提升机、密封闸板、旋转布料器、料钟及料位检测装置等组成。
石灰石经预热、煅烧和冷却后,在冷却带底部由抽屉式出料机直接卸入窑下部灰仓,然后经仓下振动给料机排出。
2. 4 风机系统套筒窑风机系统主要由排烟机、引射风机、内筒冷却风机组成。
排烟机用以抽出窑内废气,使窑保持负压;引射风机向燃烧器供给喷射空气,使窑内形成循环气体;内筒冷却风机向内筒供给冷却空气。
同时,冷却空气冷却内筒后得到预热并作为燃烧器的二次空气。
3.套筒窑的煅烧原理及工艺特点3. 1 逆流煅烧和并流煅烧有机结合石灰石在套筒窑内煅烧过程中的一个显著特点是逆流煅烧和并流煅烧同时进行。
套筒窑外壳上分布的两层燃烧室将窑体分成两个逆流操作的煅烧带和一个并流操作的煅烧带。
3. 1. 1 逆流煅烧上燃烧室为不完全燃烧,助燃空气供给不足,只有50 %左右。
在废气引风机的作用下,不完全燃烧烟气进入上部料层与来自下方含过剩空气的气流相遇,使不完全燃烧产物得到完全燃烧。
这个区域(从上燃烧室到上部内套筒下口平面) 即为上部煅烧带。
在此区域内其气流方向与物料流动方向相反,煅烧过程称为逆流煅烧。
逆流煅烧时,石灰石处于分解初期需要吸收大量热量,所以一般不会产生过烧现象。
随着料流向下运动,石灰石逐渐通过上部煅烧带。
在上部煅烧带内完全燃烧后的烟气继续上行至窑顶,在窑顶又分成两部分: 一部分(约占废气总量的70 % ,气量通过调节阀控制) 经环形石灰石层(预热带) 对石灰石进行预热, 同时自身温度降到180 ℃左右;另一部分(约占废气总量的30 %左右) 经上内筒进入空气换热器,温度降低到180~250 ℃,再进入废气管道。
两部分烟气均由同一台引风机抽出,然后经布袋除尘后排入大气。
在上、下燃烧室之间的区域为中部煅烧带,中部煅烧带亦为逆流煅烧。
3. 1. 2 并流煅烧下部燃烧室为完全燃烧,空气过剩系数为2.0左右。
下燃烧室燃烧产生的高温烟气(温度<1350 ℃) 分成两股:一股经中部煅烧带、上部煅烧带流向窑顶与来自上燃烧室的不完全燃烧气体相遇;另一股气流在下燃烧室喷射器的作用下往下走,形成并流煅烧带(下燃烧室平面到下内筒循环气体入口平面之间的区域)。
并流煅烧是套筒窑整个煅烧工艺的关键。
石灰最终在这个区域内烧成,高温烟气经料层煅烧石灰,然后从下内筒底部均布的4 个循环气体入口处进入下内筒;石灰冷却空气从底部吸入窑内,被高温石灰预热后与高温烟气一起从下内筒入口处进入下内筒内。
两股气流混合后称为循环气体(其中含有过剩空气可以作为燃烧二次空气) ,温度一般为800~900 ℃。
循环气体经下内筒入口→下内筒顶部→喷射器→下燃烧室料层→下内筒入口,如此循环往复。
在并流煅烧区,随着物料向下流动,石灰石表面逐渐形成了CaO 外壳,其吸热性也变差,但恰好此时较贫化的燃料和空气发生接触燃烧,热量供给较温和,因此不会使CaO 外壳过烧,又能使生芯继续分解。
3. 2 气流分布均匀针对传统竖窑气流分布不均衡问题,套筒式竖窑对窑体内部结构进行了如下几方面的特殊处理。
(1) 设置上、下两个中心内筒,使窑的装料空腔呈环形,减少料层厚度,以利于火焰或高温气体穿透整个料层。
(2) 设置上、下两层错开均布的多个燃烧室,且每个燃烧室与内筒之间由耐火砖砌筑而成的拱桥相连,以便燃烧产生的高温烟气均匀地分布在窑的整个断面上。
(3) 在下内筒的上、下部,沿圆周开有若干个孔(均布) 作为循环气体的进出口。
开孔数目与燃烧室相对应,使窑内下部煅烧带气体被均匀地引入下内筒。
通过以上特殊设计,窑内压力、气流及温度在环形截面及整个石灰石料层中得到了均衡分布,保证了石灰石焙烧的均匀性,消除了热沟造成的质量不稳定以及耐火衬易损环现象。
3. 3 回收余热,降低能耗套筒回收余热主要有以下三个途径:(1) 下内筒作为循环气体的通道。
下燃烧室产生一部分高温富氧气体向下流动将石灰石冷却空气加热到800~900 ℃,通过下内筒引出窑外,在喷射介质作用下重新回到下燃烧室作为助燃空气利用。
(2) 上内筒将窑顶30 %的废气引出窑外通过空气换热器将热量传递给引射用空气,从而回收余热,提高引射空气温度。
(3) 冷却下内筒的空气自身预热到200 ℃左右后,也被收集到环管内,然后分配到各燃烧室作为助燃空气再次利用。
通过以上三个途径,使窑内气体多余热量得到合理利用,从而达到节能的目的。
有关资料表明,套筒式竖窑能耗仅次于迈尔滋窑,为3762~3971 kJ / kg。
3. 4 全程负压操作套筒窑的特殊结构大大降低了窑内气流阻力损失,易实现全程负压操作,有利于窑内工况调节,同时减轻窑体密封件的负荷,改善劳动环境,使操作更安全。
3. 5 原料适应性更强传统石灰竖窑由于自身结构和煅烧工艺的局限性,入窑原料粒度限制在70~150 mm 范围内,超过标准(小于70 mm 或大于150 mm) 则会影响窑内透气性和石灰煅烧质量。
而套筒窑由于采用环形空间煅烧石灰石,极大地改善了窑内物料透气性,为石灰石提供了优良的煅烧条件,从而扩宽了原料粒度范围和粒径比。
套筒窑的原料范围为15~180 mm ,粒径比能达到1∶3 的水平。