当前位置:
文档之家› 发电机PT故障现象及处理参考文档
发电机PT故障现象及处理参考文档
二、发电机出口PT故障情况分析
C、PT一次熔断器接触不良 发电机励磁系统在AVR1自动通道运行情况下,出现励磁电流、 励磁电压、无功功率波动较大的异常情况。检修人员首先对 AVR1通道有关的PT回路进行检查、测试,具体数据如下: Uan1=59.05V、Ubn1=59.15V、Ucn1=57.26V、3U01=1.6V、 Uda1=33.8V、Udb1=33.9V、Udc1=32.8V(但Uan2=59.06V、 Ubn2=59.00V、Ucn2=59.00V均正常),根据1YH三相电压存在不 平衡及有3U0出现的数据证明,初步确定第一组PT一次回路可能 存在薄弱环节。但经过热成像测温后认为一次熔断器不存在故 障,最后确认为第一组C相PT一次插头接触不良,经过在线调整 第一组C相PT运行位置接触情况后,第一组PT二次回路电压完全 恢复平衡。3U0下降至04 V ~0.7V,励磁调节器完全恢复了 AVR1通道正常运行。
一、PT结构原理分析
PT原理图
PT外形图
二、发电机出口PT故障情况分析
2.1、PT设备分布及应用现状:
右图是单元发电机组PT回路一 次接线原理图。发电机组出口设计有 3组PT(1YH、2YH、3YH),其规格 型号为:JDZX4-20型电压互感器, 变比均为(20/√3)/(0.1√3)/ (0.1/3)KV,配有9只RN2-20型高 压熔断器(正常电阻值为110欧姆左 右)。
发电机PT故障现象及处理
内容摘要
01 PT结构原理分析
发电机出口PT故障情
02 况分析
发电机出口PT故障处
03 理
一、PT结构原理分析
电压互感器是发电厂、变电所等输电和供电系统不可缺少的一种电器。电压互感 器和变压器很相像,都是用来变换线路上的电压。但是变压器变换电压的目的是为了 输送电能,因此容量很大,一般都是以千伏安或兆伏安为计算单位;而电压互感器变 换电压的目的,主要是用来给测量仪表和继电保护装置供电,用来测量线路的电压、 功率和电能,或者用来在线路发生故障时保护线路中的贵重设备、电机和变压器,因 此电压互感器的容量很小,一般都只有几伏安、几十伏安,最大也不超过一千伏安。
次侧的理想三角形负载阻抗。
二、发电机出口PT故障情况分析
A、1YH正常运行过程中一次电压矢量分析如图二:
图二表明一次电压对称,线电压20KV、相对地电压为 20/√3KV。
B、1YH正常运行过程中二次电压矢量分析如图三:
图三表明二次电压对称:线电压Uab=100V、Uac=100V、 Ubc=100V;相电压Ua对地等于100V、Ub对地等于0V、Uc对地等 于100V;二次侧开口三角形输出电压3U0=0V。
注:3YH与2YH的一次电压、二次电压矢量图完全相同。
二、发电机出口PT故障情况分析
2.2、PT一次熔断器故障技术分析
A、PT一次熔断器劣化: 发电机出口电压在DCS系统操作员画面上显示出现明显偏差,出现快速摆 动的现象,UAB最高达20.75KV、UAC与UBC最低达19.07KV,且频繁波动, 二次侧3U0出现不平衡电压,在1.89V至5.02V之间上下波动。现场用数字 万用表测量端子箱内二次回路电压,发现1YH二次回路的Uab=101.3V、 Uac=99.9V、Ubc=96.1V;Ua对地等于101.9V、Ub对地等于0.13V、Uc对地 等于96.4V;3U0=4.5V。而2~3YH二次回路三相电压显示无异常。 由于发电机出口2PT、3PT线电压对称且定子接地保护(接中性点配电变压 器二次侧电压U0N)没有任何信号,初步排除发电机组本身存在故障的可 能。根据图六、图七的电压矢量图分析,由于UCN阻抗特性发生变化、Un 因不直接接地而发生电位漂移;Ua、Ub、Uc三者之间的相位角出现一定的 偏差,从而导致3Uo出现不平衡电压,所以初步判断为发电机组1YH的C相 PT一次熔断器3RD出现劣化现象。 通过使用热成像仪测量发电机出口PT柜内熔断器,发现C相第一组PT一次 侧熔断器3RD端部比其它8个熔断器高6℃左右(见右图的热影像图片), 进一步确认C相一次熔断器故障。
二、发电机出口PT故障情况分析
C、2YH正常运行过程中一次电压矢量分析如图四:
图四表明其一次电压对称,线电压20KV、相对地电压为20/√3KV。
D、2YH正常运行过程中二次电压矢量分析如图五:
图五表明二次电压对称:线电压Uab=100V、Uca=100V、 Ubc=100V;相电压Ua对地等于58V、Ub对地等于58V、Uc对地等 于58V。
两个绕组之间以及绕组与铁心之间都有绝缘,使两个绕组之间以及绕组与铁心之 间都有电的隔离。电压互感器在运行时,一次绕组N1并联接在线路上,二次绕组N2 并联接仪表或继电器。因此在测量高压线路上的电压时,尽管一次电压很高,但二次 却是低压的,可以确保操作人员和仪表的安全。发电机出口为什么需要变换电压呢? 这是因为根据发电、输电和用电的不同情况,发电机出口一次接线上的电压大小不一, 而且相差悬殊,有的是低压220V和380V,有的是高压几万伏,目前有220V—27KV不 等。要直接测量这些低压和高压电压,就需要根据线路电压的大小,制作相应的低压 和高压的电压表和其他仪表和电压互感器的基本结构和变压器很相似,它也有两个绕 组,一个叫一次绕组,一个叫二次绕组。两个绕组都装在或绕在铁心上。
经运行人员做好安全措施后,将该组电压互感器拉出运 行位置,取下C相高压侧熔断器,用数字万用表测量熔断器电阻 值为25兆欧,有明显劣化,更换新熔断器后该组PT恢复正常运 行。
二、发电机出口PT故障情况分析
B、PT一次熔断器完全熔断(断开)分析:
图八表明一次电压出现严重不对称,仅UAB线电压20KV、UA 及UB相对地电压为20/√3KV。
1YH二次回路采用B相接地方式, 主要用于自动励磁调节器1(AVR1)、 故障录波器屏和DCS系统三相电压测 量,另外引出一组开口三角电压获取 3U0送到故录和变送器屏。第2、3组 PT二次侧中性点接地,其中2YH主 要用于发变组保护1、变送器屏三相 电压测量、电度表计量以及自动准同 期装置。3YH主要用于发变组保护2、 自动励磁调节器2(AVR2)、发电机 进相监测屏、发电机功角测量屏。 Zab、Zbc、Zca分别为电压互感器二
图九表明二次电压出现严重不对称:线电压Uab=100V,Uac 及Ubc却在50~58V之间波动;相电压Ua对地等于100V、Ub对地 等于0V、Uc对地在50~58V之间波动 ;二次侧开口三角形输出 电压3U0约为33.3V。右表明在处理3RD过程中的3U0输出电压波 形图。从电压曲线很明显可以看出3RD在劣化过程中3U0约为几 伏,而在更换3RD时为33V左右。