当前位置:文档之家› 细胞生物学-物质的跨膜运输(翟中和第四版)-含注释!!!

细胞生物学-物质的跨膜运输(翟中和第四版)-含注释!!!


动物、植物细胞主动运输比较
三、ABC 超家族
• ABC 超家族也是一 类ATP 驱动泵 • 广泛分布于从细菌 到人类各种生物中, 是最大的一类转运 蛋白 • 通过ATP 分子的结 合与水解完成小分 子物质的跨膜转运
(一)ABC转运蛋白的结构与工作模式
• 4 个“核心”结构域
– 2 个跨膜结构域,分别含6 个跨
H+/K+ ATPase Control of acid secretion in the stomach
二、V 型质子泵和 F 型质子泵
• V 型质子泵广泛存在 于动物细胞的胞内体 膜、溶酶体膜,破骨 细胞和某些肾小管细 胞的质膜,以及植物、 酵母及其他真菌细胞 的液泡膜上 (V 为 vesicle) • 转运 H+ 过程中不形成 磷酸化的中间体
导兴奋)
B. 配体门通道(胞外配体)
(突触后膜接收乙酰胆碱的
受体)
C. 配体门通道(胞内配体)
D. 应力激活通道(内耳的 听毛细胞)
含羞草“害羞”的机制
• 估计细胞膜上与物质转运有关的蛋白占核基因编码蛋白的 15~30%,细 胞用在物质转运方面的能量达细胞总消耗能量的2/3。
• 两类主要转运蛋白:
P型泵的主要特点:都是跨膜蛋白,并且是由一条多肽完成 所有与运输有关的功能,包括ATP的水解、磷酸化和离子 的跨膜运输。
Na+-K+ATP酶的分子结构:
α β 两种亚基组成的二聚体。
α 亚基具有ATP酶的活性;
β 亚基是具有组织特异性的糖蛋白。
(一)Na+-K+ 泵(Na+-K+ ATPase)
Figure 11-14 Molecular Biology of the Cell (© Garland Science 2008)
resistance protein )是第一个被发现的真核细胞ABC转运器, 是多药抗性蛋白,约40%患者的癌细胞内该基因过度表达。
(二)ABC 转运蛋白与疾病
multidrugresistance, MDR
cystic fibrosis transmembrane conductance regulator,CFTR
F型
V型
只是H+
多个跨膜亚基, 亚基的细胞质部 ①植物、酵母和其它真菌的液泡膜; 分可将ATP水解, 并利用释放的 ②动物细胞的溶酶体和内体的膜;③ 能量将H+运输到囊泡中,使之成 某些分泌酸性物质的动物细胞质膜 为酸性环境。 (如破骨细胞和肾管状细胞)。
ABC型
离子和各种 两个膜结构域形成水性通道,两 ①细菌质膜(运输氨基酸、糖和肽);② 小分子 个细胞质ATP结合结构域与ATP 哺乳动物内质网膜(运输与MHC 蛋白 水解及物质运输相偶联。不同结 相关的抗原肽);③哺乳动物细胞质膜 构域可以位于同一个亚基,也可 (运输小分子、 磷脂、小的类脂分子) 位于不同的亚基。
• 载体蛋白所介导、逆着电化学梯度或浓度梯度
• 3种类型
– ATP 驱动泵(ATP直接供能) – 协同转运或偶联转运(ATP间接提供能量)
– 光驱动泵(细菌细胞膜上的菌紫红质蛋白)
第二节 ATP驱动泵与主动运输
• ATP 驱动泵通常又称为转运ATPase,分为4类
– P型泵、V型质子泵、F型质子泵和ABC超家族 前三种只转运离子,后一种主要转运小分子
• 顺着电化学梯度或浓度梯度 • 协助扩散 (facilitated diffusion) • 膜转运蛋白协助
– 载体蛋白介导 – 通道蛋白介导
1. 葡萄糖转运蛋白
• 12 次跨膜α 螺旋 • 通过构象改变完成葡萄糖的 协助扩散 • 转运方向取决于葡萄糖浓度 梯度
2. 水孔蛋白:水分子的跨膜通道 (2003诺奖) • 水分子借助质膜上的水孔蛋白实现快速跨膜转运
• 维持细胞质基质 pH 中 性和细胞器内 pH 酸性
二、V 型质子泵和 F 型质子泵
• F 型质子泵存在于细菌质膜、 线粒体内膜和叶绿体类 囊 体膜上(F 为factor 的第一 个字母) • 转运 H+ 过程中不形成磷酸 化的中间体
• F 型质子泵常利用质子动力 势合成ATP,又称作 H+ATP合成酶
– 载体蛋白(carrier protein,
transporter)
– 通道蛋白(channel protein)
(一)载体蛋白及其功能
• 多次跨膜;通过构象改变介导溶质分子跨膜转运 • 与底物(溶质)特异性结合;具有高度选择性;具有类似 于酶与底物作用的饱和动力学特征;但对溶质不做任何共 价修饰
Fig. Xenopus oocytes microinjected with AQP1 mRNA swell rapidly when placed in a hypo-osmotic medium, in contrast to noninjected oocytes.
/nobel_prizes/chemistry/laureates/2003/popular.html
2003年,美国科学家彼得· 阿格雷和罗德里克· 麦金农,分别因对细胞膜水通道, 离子通道结构和机理研究而获诺贝尔化学奖。
Peter Agre
Roderick MacKinnon
2. 水孔蛋白:水分子的跨膜通道 (2003诺奖)
• 调节细胞渗透压以及生理与病理作用
Fig . Passage of water molecules through the aquaporin AQP1. Because of the positive charge at the center of the channel, positively charged ions such as

Na+/K+ 泵具有三个重要作用: 一是维持了细胞Na+离子的平衡,抵消了Na+离子的 渗透作用; 二是在建立细胞质膜两侧Na+离子浓度梯度的同时, 为葡萄糖协同运输泵提供了驱动力; 三是Na+泵建立的细胞外电位,为神经和肌肉电脉冲 传导提供了基础。
地高辛、乌本苷等强心剂抑制其活性;Mg2+和少量膜脂有助
– 载体蛋白:又称做载体、通透酶和转运器。介导被动运输与主动运 输
– 通道蛋白:能形成亲水的通道,允许特定的溶质通过。只介导被动
运输
两者区别:以不同方式辨别溶质。通道蛋白主要根据溶质大小和电荷和进 行辨别,假如通道处于开放状态,则足够小和带有适当电荷的分子或离子 就能通过;而载体蛋白只允许与其结合部位相适应的溶质分子通过,并且 每次转运都发生自身构象的变化。
提高于其活性。
(二)Ca2+ 泵及其他 P 型泵
• 细胞质基质中低 Ca2+ 浓度的维持 主要得益于质膜
或细胞器膜上的
钙泵 • 每消耗1 分子 ATP 从细胞质基 质泵出 2 个Ca2+
1. Ca2+ 泵的结构与功能
钙离子泵
• 作用:维持细胞内较低的钙离子浓度(胞内钙浓度 10-7M
,胞外10-3M)。
• 位置:质膜、内质网膜。
• 类型:P型离子泵,每分解一个ATP分子,泵出2个Ca2+。
位于肌质网上的钙离子泵占肌质网膜蛋白质的90%。
2. P 型 H+ 泵
• 植物细胞、真菌(包括酵母)和细菌细胞质膜上虽然没有Na+K+ 泵, 但有P 型H+ 泵(H+-ATPase) • P 型H+ 泵将 H+ 泵出细胞,建立和维持跨膜 H+ 电化学梯度
翟中和 王喜忠 丁明孝 主编
细胞生物学(第4版)
第5章 物质的跨膜运输
本章主要内容
• 膜转运蛋白与小分子物质的跨膜运输 • ATP驱动泵与主动运输 • 胞吞作用与胞吐作用
第一节 膜转运蛋白与小分子物质的跨膜运输
一、脂双层的不透性和膜转运蛋白
• 脂双层疏水对绝大多数极
性分子、离子以及细胞代 谢产物的通透性极低,形 成了细胞的渗透屏障 • 膜转运蛋白可分为两类:
一、P 型泵 (P-type pump)
• 2 个α 催化亚基,具有ATP 结合位点;2 个β 调节亚基 • 至少有一个α 催化亚基发生 磷酸化和去磷酸化反应,改 变转运泵的构象,实现离子
(phosphorylation)
的跨膜转运
• 转运泵水解ATP 使自身形 成磷酸化的中间体
■ P-型离子运输泵的作用机理
2. Na+-K+ 泵主要生理功能
A. 维持细胞膜电位 B. 维持动物细胞渗透
平衡
2. Na+-K+ 泵主要生理功能 C. 吸收营养
动物细胞对葡萄糖或氨基酸等 有机物吸收的能量由蕴藏在 Na+ 电化学梯度中的势能提供 植物细胞、真菌和细菌通常利 用质膜上的H+-ATPase 形成 的H+ 电化学梯度来吸收营养
H3O+, are deflected. This
prevents proton leakage through the channel.
/nobel_prizes/chemistry/laureates/2003/chempub3high.jpg
(三)主动运输(active transport)
CFTR:囊性纤维化跨膜转导调节因子
四种运输ATPase在结构、存在部位和功能上有什么不同?
四类ATP驱动的离子和小分子运输泵的比较
类型 P型 运输物质 结构与功能特点 存在的部位
H+,Na+, 通常有大小两个亚基,大亚基被 H+泵:存在于植物、真菌和细菌的质 K+,Ca2+ 磷酸化,小亚基调节运输。 膜;Na+/K+:动物细胞的质膜;H+/K+泵: 哺乳动物胃细胞表层质膜;Ca2+泵:所 有真核生物的质膜; 肌细胞的肌质网 膜。 只是H+ 有多个跨膜亚基,建立H+的电化 细菌的质膜、线粒体内膜、叶绿体的 学梯度,合成ATP。 类囊体膜。
相关主题