液晶高分子材料的现状及研究进展摘要:本文综述了液晶高分子材料的研究现状,包括简单介绍了液晶高分子的发展历史,结构及性能,介绍了液晶高分子研究的新进展,对液晶高分子早各个领域的应用和潜在的性能进展做了简要的阐述,并针对液晶高分子存在的问题提出了相应的建议。
关键词:液晶高分子研究应用前言高分子科学,以30年代H.staidinger建立高分子学说为开展.此后高分子化学有了飞跃的发展.与此同时,高分子物理化学也有相应的发展。
高分子化学注重对高聚物合成以及性质的研究,而高分子物理则重点研究高聚物的结构与性能,二者相辅相成,近年来研究较多的高分子液晶材料就是两者结合的典范。
液晶现象是1888年奥地利植物学家F.Reintizer[1]在研究胆甾醇苯甲酯时首先发现的。
研究表明,液晶是介于液体和晶体之间的一种特殊的热力学稳定相态,它既具有晶体的各相异性,又有液态的流动性,液晶高分子就是具有液晶性的高分子,大多数由小分子量基元键合而成,它是一种结晶态,既具有液体的流动性又具有晶体的各向异性特征。
这样人们自然会联想到具有这种结构的高分子材料。
1937年Bawden和Pirie[1]在研究烟草花叶病病毒时,发现其悬浮液具有液晶的特性。
这是人们第一次发现生物高分子的液晶特性,其后1950年,Elliott与Ambrose第一次合成了高分子液晶,溶致型液晶的研究工作至此展开。
50年代到70年代,美国Duponnt公司投入大量人力才力进行高分子液晶发面的研究,取得了极大成就,1959年推出芳香酰胺液晶,但分子量较低,1963年,用低温溶液缩聚法合成全芳香聚酰胺,并制成阻燃纤维Nomex,1972年研制出强度优于玻璃纤维的超高强.高模量的Kevlar纤维,并付注实用,以后,高分子液晶的研究则从溶致型转向为热致型。
在这一方面Jackson等作出了较大贡献,他们合成了对苯二甲酸已二醇酯与对羟基苯甲酸的共聚物,可注塑成型,这是一种模量极高的自增强液晶材料。
从应用领域分析,液晶高分子材料在电子电气行业中需求量最大且发展迅速,1998年可达3600 吨,平均年增长23.1 %;其次是通讯业,需求量约1540 吨,增长21.1%;工业界及运输业总需求量不到1700 吨,平均年增长率约为I1%。
主要用于接插件、开关、继电器、模塑印刷电路板、光缆结构件、复合材料、机械手、泵/阀门组件、功能件等,极大地推动了液晶高分子技术及其它高新技术的发展。
从高分子液晶诞生到现在只有50多年的历史,是一门很年轻的学科。
虽然高分子液晶[2]是具有高强度、高模量、耐高温、低膨胀系数、低成型收缩率、低密度、良好的介电性、阻燃性和耐化学腐蚀性等一系列优异的综合性能,作为液晶自增强塑料、高性能纤维、板材、薄膜及光导纤维包覆层,被广泛应用于电子电器、航天航空、国防军工、光通讯等高新技术领域以及汽车、机械、化工等国民经济各工业部门。
但目前对它的研究仍处于较低的水平,理论研究较狭隘,液晶高分子尚存在制品的机械性能各向异性、接缝强度低、价格相对较高等缺点,这些都有待于进一步的改进,所以高分子液晶仍是高分子科学研究的一个热点。
1液晶高分子材料的特性[3]1.1取向方向的高拉伸强度和高模量绝大多数商业化液晶高分子产品都具有这一特性。
与柔性链高分子比较,分子主链或侧链带有介晶基元的液晶高分子,最突出的特点是在外力场中容易发生分子链取向。
实验研究表明,液晶高分子处于液晶态时,无论是熔体还是溶液,都具有一定的取向序。
当液晶高分子液体流经喷丝孔,模口或流道,即使在很低剪切速率下获得的取向,在大多数情况下,不再进行后拉伸就能达到一般柔性链高分子经过后拉伸的分子取向序。
因而即使不添加增强材料,也能达到甚至超过普通工程材料用百分之十几玻纤增强后的机械强度,表现出高强度高模量的特性。
如Kevlar的比强度和比模量均达到钢的十倍。
1.2突出的耐热性由于液晶高分子的介晶基元大多由芳环构成,其耐热性相对比较突出。
如Xydar的熔点为421℃,空气中的分解温度达到560℃,其热变形温度也可达350℃,明显高于绝大多数塑料。
此外液晶高分子有很高的锡焊耐热性,如Ekonol的锡焊耐热性为300~340℃/60s。
1.3很低的热膨胀系数由于具有高的取向序,液晶高分子在其流动方向的膨胀系数要比普通工程塑料低一个数量级,达到一般金属的水平,甚至出现负值,如Kevlar的热膨胀系数为-2×10-9K-1型过程中不收缩或收缩很低,保证了制品尺寸的精确和稳定。
2液晶高分子的研究现状2.1链型液晶高分子的研究现状主链型高分子液晶是指介晶基元处于主链中的一类高分子材料。
在20世纪70 年代中期以前,它们多是指天然大分子液晶材料。
自从Dupont 公司首次获得聚芳香酰胺的溶液型主链型高分子液晶性质的应用以来,主链型高分子液晶材料的合成、结构与性能关系和应用等都得以很大发展。
按液晶形成过程,主链型高分子液晶可以分为溶液型主链高分子液晶和热熔型主链高分子液晶。
2.1.2热熔型主链高分子液晶其高分子液晶材料与普通的高分子材料相比,有较大的性质差别。
(1)高分子液晶具有低得多的剪切粘度,同时在由各向同性至液晶态的相转变处,其粘度会有一个非常明显的降低;(2)由于液晶高分子的取向度增加,使得它沿取向方向具有很高的机械强度;(3)由于结晶程度高,高分子液晶的吸潮率很低,因此由于吸潮率引起的体积变化也非常小;(4)主链高分子液晶还具有良好的热尺寸稳定性;(5)热熔型主链高分子液晶的透气性非常低;(6)它还具有对有机溶剂的良好耐受性和很强的抗水解能力。
基于热熔型主链液晶高分子的上述性质,它特别适用于上述各性质综合在一起的场合。
例如[2],在电子工业中制作高精度电路的多接点部件,另外,易流动和低曲翘也使得它能制成较复杂的精密铸件,同时能抗强溶剂。
除了电子工业中的应用以外,它还可用于制备化学工业中使用的阀门等。
2.2侧链型高分子液晶的研究现状侧链型高分子液晶是指介晶基元处于聚合物侧链上的一类高分子液晶。
与主链型高分子液晶相比,侧链高分子液晶的性质在较大程度上取决于介晶基元,而受聚合物主链性质的影响较小。
由于它的介晶基元多是通过柔性链与聚合物主链相接,其平动和转动度的限制变为可控的,因此达到与相应小分子液晶具有同样液晶行为是侧链型高分子液晶研究的目标之一。
侧链型高分子液晶比较好地将小分子液晶性质和聚合物的材料性质结为一体,是具有极大潜力的新型材料。
例如,已有许多文献报道侧链型高分子液晶在光信息储存、非线性光学和色谱等领域具有应用价值。
2.2.1溶液型侧链高分子液晶为了有利于液晶相在溶液中形成,在溶液型液晶分子中一般都含有双亲活性结构。
在溶液中当液晶分子达到一定浓度时,这些两亲分子可以在溶液中聚集成胶囊,构成油包水,或水包油结构;当液晶高分子浓度进一步增大时,分子进一步聚集,形成排列有序的液晶结构。
作为溶液型侧链高分子液晶,就是把双亲介晶基元接到聚合物链上,它在溶液中的性质与小分子液晶基本相同。
溶液型侧链高分子液晶[2]最重要的应用在于制备各种特殊性能高分子膜材料,如:LB 膜、SA膜和胶囊。
这种微胶囊可作为定点释放和缓释药物使用。
另外,溶液型侧链高分子液晶还可用于制作非线性光学器件和显示装置。
2.2.2热熔型侧链高分子液晶同溶液型侧链高分子液晶一样,热熔型侧链高分子液晶的介晶基元通过共价键与聚合物主链相连。
由于这里聚合物主链只起到连接的作用而不参与液晶相的形成,因此使其能较完全地呈现小分子液晶的性质。
侧链高分子液晶的非线性光学性质已经在某些领域中崭露头角,特别是信息储存,由于侧链高分子玻璃化转变的特点,信息可以长久地储存,也可以随时消除。
此外,在全息照相和光学透镜等方面也有十分乐观的应用前景。
同样,用侧链高分子液晶膜也可以进行可逆式全息成像。
全息成像是一种记录被摄物体反射(或透射)光中全部信息(振幅、相位) 的成像技术,它是通过一束参考光和物体反射出来的光叠加和干涉实现的,此液晶膜同传统的卤化银感光液相比,它能可逆式地记录图像,而且效果也更好。
除以上应用以外[2],侧链型高分子液晶在色谱中也有重要的应用。
它在形成高分子液晶相中的行为提供了合理设计低挥发、好热稳定性和高选择液晶固定相的途径。
已有结果证明的聚合物包括聚硅氧烷和聚丙烯酸酯类组成的侧链型高分子液晶在分离顺、反式脂肪酸甲基酯、杂环芳香化合物和多环芳烃等方面具有较一般固定相高的效率。
3液晶高分子的合成研究目前,液晶高分子的合成主要采用缩聚反应,合成的液晶高分子主要为全芳香聚醋主链液晶,芳香族聚酞胺或芳一脂族聚醋酞胺主链液晶,芳一脂族共聚酷主链液晶及侧链液晶。
聚合方法以熔融缩聚为主,也可采用溶液缩聚及固相缩聚。
张慧卿等[4]1998年采用PET齐聚物的原位乙酞化法,通过加人少量乙二醇合成了端羚基液晶聚合物PET/60PHB(PHB为对经基苯甲酸),并将其作为大单体与双酚A及碳酸二苯醋进行熔融酷交换反应(缩聚)而制得液晶嵌段共聚物PEI'/60PHB一b - PC。
4.1液晶高分子的共混改性液晶高分子与热塑性塑料或树脂等共混,不仅可起到增强作用,而且可改善共混物的加工性能。
梁伯润等[4]在1998年研究了PET与Vecda A 950型T液晶高分子共混物初生纤维的结构与性能,以及热处理对它的影响,发现初生纤维的取向与力学性能受纺丝拉伸比和共混物组成所影响,当T液晶高分子> 10%,并在18090下处理2.5 h时,可使初生纤维的力学性能得到明显改善。
在PC/纤维素芳香醋(CAE)复合物中加人5%的CAE,可使PC/CAE复合物的粘度大大下降。
5.1嵌段液晶共聚物应用的研究由于嵌段共聚物的合成技术有较大的可靠性和预见性,因此能较好地控制诸如序列结构、链段长度及多分散性等重要参数,准确地达到所要求的结构,这样便可根据不同的使用要求进行分子裁剪,设计合成具有特殊性能的高分子材料。
嵌段液晶共聚物除了用作液晶原位复合材料的增容剂,制备高强度、高模量及加工性能优异的高性能结构材料外,还可用于:①制备集光电性、液晶性及优异的加工性于一身的高科技光电功能材料;②利用嵌段液晶共聚物相转变的平衡特性可进行评估聚合物特殊的物理过程和物理性能;③作为半结晶嵌段共聚物还可用来研究总体几何结构与拓扑之间的关系;④嵌段液晶共聚物还可用来研究不同的相界面条件及相畴尺寸对液晶相的形成、特性及稳定性的影响。
5.2液晶高分子分子复合材料液晶高分子与其它高分子的共混物是一类很有生命力和发展前景的材料,它性能优良、价格便宜、品种多样、加工容易,因而深受国内外重视。
如何将棒状分聚合物分散到柔性链分子基体中,使它们尽可能地达到分子分散的水平,一直是科学家们努力追求的。