解析几何压轴大题四大策略解析几何研究的问题是几何问题,研究的手法是代数法(坐标法).因此,求解解析几何问题最大的思维难点是转化,即几何条件代数化.如何在解析几何问题中实现代数式的转化,找到常见问题的求解途径,是突破解析几何问题难点的关键所在.突破解析几何难题,先从找解题突破口入手.策略一 利用向量转化几何条件[典例] 如图所示,已知圆C :x 2+y 2-2x +4y -4=0,问:是否存在斜率为1的直线l ,使l 与圆C 交于A ,B 两点,且以AB 为直径的圆过原点?若存在,求出直线l 的方程;若不存在,请说明理由.[解题观摩] 假设存在斜率为1的直线l ,使l 与圆C 交于A ,B 两点,且以AB 为直径的圆过原点.设直线l 的方程为y =x +b ,点A (x 1,y 1),B (x 2,y 2).联立⎩⎪⎨⎪⎧y =x +b ,x 2+y 2-2x +4y -4=0,消去y 并整理得2x 2+2(b +1)x +b 2+4b -4=0, 所以x 1+x 2=-(b +1),x 1x 2=b 2+4b -42.①因为以AB 为直径的圆过原点,所以OA ⊥OB , 即x 1x 2+y 1y 2=0.又y 1=x 1+b ,y 2=x 2+b ,则x 1x 2+y 1y 2=x 1x 2+(x 1+b )(x 2+b )=2x 1x 2+b (x 1+x 2)+b 2=0. 由①知,b 2+4b -4-b (b +1)+b 2=0, 即b 2+3b -4=0,解得b =-4或b =1. 当b =-4或b =1时,均有Δ=4(b +1)2-8(b 2+4b -4)=-4b 2-24b +36>0, 即直线l 与圆C 有两个交点.所以存在直线l ,其方程为x -y +1=0或x -y -4=0. [题后悟通]以AB 为直径的圆过原点等价于OA ⊥OB ,而OA ⊥OB 又可以“直译”为x 1x 2+y 1y 2=0,可以看出,解此类解析几何问题的总体思路为“直译”,然后对个别难以“直译”的条件先进行“转化”,将“困难、难翻译”的条件通过平面几何知识“转化”为“简单、易翻译”的条件后再进行“直译”,最后联立“直译”的结果解决问题.[针对训练]1.已知椭圆M :x 24+y 23=1,点F 1,C 分别是椭圆M 的左焦点,左顶点,过点F 1的直线l (不与x 轴重合)交椭圆M 于A ,B 两点.(1)求椭圆M 的离心率及短轴长.(2)问:是否存在直线l ,使得点B 在以线段AC 为直径的圆上?若存在,求出直线l 的方程;若不存在,请说明理由.解:(1)由题意知,椭圆M 的离心率e =c a =12,短轴长2b =2 3.(2)设点B (x 0,y 0),由题意知BC ⊥BF 1,点F 1(-1,0),C (-2,0), 由BC ·BF 1=0,得(-2-x 0,-y 0)·(-1-x 0,-y 0)=0, 即(x 0+2)(x 0+1)+y 20=0.①又知点B (x 0,y 0)满足x 204+y 23=1.②联立①②,解得x 0=-2或x 0=-10.由椭圆方程知,x 0=-2或x 0=-10均不满足题意,故舍去. 因此,不存在直线l ,使得点B 在以线段AC 为直径的圆上.策略二 角平分线条件的转化[典例] 已知动圆过定点A (4,0),且在y 轴上截得的弦MN 的长为8. (1)求动圆圆心的轨迹C 的方程;(2)已知点B (-1,0),设不垂直于x 轴的直线l 与轨迹C 交于不同的两点P ,Q ,若x 轴是∠PB Q 的角平分线,求证:直线l 过定点.[解题观摩] (1)设动圆圆心为点P (x ,y ),则由勾股定理得x 2+42=(x -4)2+y 2,化简即得圆心的轨迹C 的方程为y 2=8x .(2)证明:法一:由题意可设直线l 的方程为y =kx +b (k ≠0).联立⎩⎪⎨⎪⎧y =kx +b ,y 2=8x ,得k 2x 2+2(kb -4)x +b 2=0.由Δ=4(kb -4)2-4k 2b 2>0,得kb <2. 设点P (x 1,y 1),Q(x 2,y 2), 则x 1+x 2=-2kb -4k 2,x 1x 2=b 2k2.因为x 轴是∠PB Q 的角平分线,所以k PB +k Q B =0, 即k PB +k Q B =y 1x 1+1+y 2x 2+1=2kx 1x 2+k +b x 1+x 2+2b x 1+1x 2+1=8k +bx 1+1x 2+1k 2=0,所以k +b =0,即b =-k ,所以l 的方程为y =k (x -1). 故直线l 恒过定点(1,0).法二:设直线PB 的方程为x =my -1,它与抛物线C 的另一个交点为Q ′,设点P (x 1,y 1),Q ′(x 2,y 2),由条件可得,Q 与Q ′关于x 轴对称,故Q(x 2,-y 2).联立⎩⎪⎨⎪⎧x =my -1,y 2=8x ,消去x 得y 2-8my +8=0,其中Δ=64m 2-32>0,y 1+y 2=8m ,y 1y 2=8. 所以k P Q =y 1+y 2x 1-x 2=8y 1-y 2, 因而直线P Q 的方程为y -y 1=8y 1-y 2(x -x 1). 又y 1y 2=8,y 21=8x 1,将P Q 的方程化简得(y 1-y 2)y =8(x -1), 故直线l 过定点(1,0).法三:由抛物线的对称性可知,如果定点存在, 则它一定在x 轴上,所以设定点坐标为(a,0),直线P Q 的方程为x =my +a .联立⎩⎪⎨⎪⎧x =my +a ,y 2=8x 消去x ,整理得y 2-8my -8a =0,Δ>0.设点P (x 1,y 1),Q(x 2,y 2),则⎩⎪⎨⎪⎧y 1+y 2=8m ,y 1y 2=-8a .由条件可知k PB +k Q B =0, 即k PB +k Q B =y 1x 1+1+y 2x 2+1=my 1+a y 2+my 2+a y 1+y 1+y 2x 1+1x 2+1=2my 1y 2+a +1y 1+y 2x 1+1x 2+1=0,所以-8ma +8m =0.由m 的任意性可知a =1,所以直线l 恒过定点(1,0). 法四:设P ⎝⎛⎭⎫y 218,y 1,Q ⎝⎛⎭⎫y 228,y 2, 因为x 轴是∠PB Q 的角平分线, 所以k PB +k Q B =y 1y 218+1+y 2y 228+1=0, 整理得(y 1+y 2)⎝⎛⎭⎫y 1y 28+1=0. 因为直线l 不垂直于x 轴,所以y 1+y 2≠0,可得y 1y 2=-8. 因为k P Q =y 1-y 2y 218-y 228=8y 1+y 2, 所以直线P Q 的方程为y -y 1=8y 1+y 2⎝⎛⎭⎫x -y 218, 即y =8y 1+y 2(x -1). 故直线l 恒过定点(1,0). [题后悟通]本题前面的三种解法属于比较常规的解法,主要是设点,设直线方程,联立方程,并借助判别式、根与系数的关系等知识解题,计算量较大.解法四巧妙地运用了抛物线的参数方程进行设点,避免了联立方程组,计算相对简单,但是解法二和解法四中含有两个参数y 1,y 2,因此判定直线过定点时,要注意将直线的方程变为特殊的形式.[针对训练]2.如图所示,已知椭圆C 的中心在原点,焦点在x 轴上,离心率等于32,它的一个顶点恰好在抛物线x 2=8y 的准线上. (1)求椭圆C 的标准方程;(2)点P (2,3),Q(2,-3)在椭圆上,A ,B 是椭圆上位于直线P Q 两侧的动点,当A ,B 运动时,满足∠AP Q =∠BP Q ,试问直线AB 的斜率是否为定值,请说明理由.解:(1)设椭圆C 的标准方程为x 2a 2+y 2b 2=1(a >b >0).∵椭圆的一个顶点恰好在抛物线x 2=8y 的准线y =-2上, ∴-b =-2,解得b =2.又c a =32,a 2=b 2+c 2,∴a =4,c =2 3. ∴椭圆C 的标准方程为x 216+y 24=1.(2)设A (x 1,y 1),B (x 2,y 2),∵∠AP Q =∠BP Q ,则直线P A ,PB 的斜率互为相反数, 设直线P A 的斜率为k ,则直线PB 的斜率为-k , 直线P A 的方程为y -3=k (x -2),联立方程,得⎩⎪⎨⎪⎧y -3=k x -2,x 216+y 24=1,消去y ,得(1+4k 2)x 2+8k (3-2k )x +4(3-2k )2-16=0,∴x 1+2=8k 2k -31+4k 2.同理可得x 2+2=-8k -2k -31+4k 2=8k 2k +31+4k 2,∴x 1+x 2=16k 2-41+4k 2,x 1-x 2=-163k1+4k 2, k AB =y 1-y 2x 1-x 2=k x 1+x 2-4k x 1-x 2=36.∴直线AB 的斜率为定值36. 策略三 弦长条件的转化[典例] 如图所示,已知椭圆G :x 22+y 2=1,与x 轴不重合的直线l 经过左焦点F 1,且与椭圆G 相交于A ,B 两点,弦AB 的中点为M ,直线OM 与椭圆G 相交于C ,D 两点.(1)若直线l 的斜率为1,求直线OM 的斜率.(2)是否存在直线l ,使得|AM |2=|CM ||DM |成立?若存在,求出直线l 的方程;若不存在,请说明理由.[解题观摩] (1)由题意可知点F 1(-1,0), 又直线l 的斜率为1, 故直线l 的方程为y =x +1. 设点A (x 1,y 1),B (x 2,y 2),由⎩⎪⎨⎪⎧y =x +1,x 22+y 2=1,消去y 并整理得3x 2+4x =0, 则x 1+x 2=-43,y 1+y 2=23,因此中点M 的坐标为⎝⎛⎭⎫-23,13. 故直线OM 的斜率为13-23=-12.(2)假设存在直线l ,使得|AM |2=|CM ||DM |成立. 由题意,直线l 不与x 轴重合, 设直线l 的方程为x =my -1.由⎩⎪⎨⎪⎧x =my -1,x 22+y 2=1,消去x 并整理得(m 2+2)y 2-2my -1=0. 设点A (x 1,y 1),B (x 2,y 2),则⎩⎨⎧y 1+y 2=2m m 2+2,y 1y 2=-1m 2+2,可得|AB |=1+m 2|y 1-y 2|=1+m 2⎝⎛⎭⎫2m m 2+22+4m 2+2=22m 2+1m 2+2, x 1+x 2=m (y 1+y 2)-2=2m 2m 2+2-2=-4m 2+2,所以弦AB 的中点M 的坐标为⎝ ⎛⎭⎪⎫-2m 2+2,m m 2+2,故直线CD 的方程为y =-m2x .联立⎩⎨⎧y =-m2x ,x22+y 2=1,消去y 并整理得⎝⎛⎭⎫1+m22x 2=2, 解得x 2=21+m 22=4m 2+2. 由对称性,设C (x 0,y 0),D (-x 0,-y 0),则x 20=4m 2+2, 可得|CD |=1+m 24·|2x 0|=m 2+4·4m 2+2=2 m 2+4m 2+2. 因为|AM |2=|CM ||DM |=(|OC |-|OM |)(|OD |+|OM |),且|OC |=|OD |, 所以|AM |2=|OC |2-|OM |2, 故|AB |24=|CD |24-|OM |2,即|AB |2=|CD |2-4|OM |2,代入|AB |,|CD |和|OM |, 得8m 2+12m 2+22=4m 2+4m 2+2-4⎣⎡⎦⎤4m 2+22+m 2m 2+22,解得m 2=2,故m =± 2.所以直线l 的方程为x =2y -1或x =-2y -1. [题后悟通]本题(2)的核心在于转化|AM |2=|CM ||DM |中弦长的关系.由|CM |=|OC |-|OM |,|DM |=|OD |+|OM |,又|OC |=|OD |,则|AM |2=|OC |2-|OM |2.又|AM |=12|AB |,|OC |=12|CD |,因此|AB |2=|CD |2-4|OM |2,转化为弦长|AB |,|CD |和|OM |三者之间的数量关系,易计算.[针对训练]3.已知圆M :(x -2)2+y 2=r 2(r >0),椭圆C :x 2a 2+y 2b2=1(a >b >0)的右顶点为圆M 的圆心,离心率为22. (1)求椭圆C 的方程;(2)若存在直线l :y =kx ,使得直线l 与椭圆C 分别交于A ,B 两点,与圆M 分别交于G ,H 两点,点G 在线段AB 上,且|AG |=|BH |,求圆M 的半径r 的取值范围.解:(1)设椭圆C 的焦距为2c ,因为a =2,c a =22,所以c =1,因此b =a 2-c 2=1. 故椭圆C 的方程为x 22+y 2=1.(2)由直线l 与椭圆C 交于A ,B 两点, 设点A (x 1,y 1),B (x 2,y 2).由⎩⎪⎨⎪⎧y =kx ,x 2+2y 2-2=0得(1+2k 2)x 2-2=0, 所以x 1+x 2=0,x 1x 2=-21+2k 2,则|AB |=1+k 2·81+2k 2= 81+k 21+2k 2.因为点M (2,0)到直线l 的距离d =|2k |1+k 2, 所以|GH |=2r 2-2k 21+k 2. 显然,若点H 也在线段AB 上,则由对称性可知,直线y =kx 就是y 轴,与已知矛盾. 要使|AG |=|BH |,只需|AB |=|GH |, 即81+k 21+2k 2=4⎝⎛⎭⎫r 2-2k 21+k 2, 所以r 2=2k 21+k 2+21+k 21+2k 2=23k 4+3k 2+12k 4+3k 2+1=2⎝⎛⎭⎫1+k 42k 4+3k 2+1. 当k =0时,得r = 2.当k ≠0时,r 2=2⎝ ⎛⎭⎪⎫1+11k 4+3k 2+2<2⎝⎛⎭⎫1+12=3. 又显然r 2=2⎝ ⎛⎭⎪⎫1+11k 4+3k 2+2>2,所以2<r < 3.综上所述,圆M 的半径r 的取值范围是[2,3).策略四 面积条件的转化[典例] 设椭圆的中心在坐标原点,A (2,0),B (0,1)是它的两个顶点,直线y =kx (k >0)与椭圆交于E ,F 两点,求四边形AEBF 的面积的最大值.[解题观摩] 法一:如图所示,依题意得椭圆的方程为x 24+y 2=1,直线AB ,EF 的方程分别为x +2y =2,y =kx (k >0). 设点E (x 1,kx 1),F (x 2,kx 2),其中x 1<x 2, 且x 1,x 2满足方程(1+4k 2)x 2=4, 故x 2=-x 1=21+4k 2.① 根据点到直线的距离公式和①,得点E ,F 到直线AB 的距离分别为h 1=|x 1+2kx 1-2|5=21+2k +1+4k 251+4k 2,h 2=|x 2+2kx 2-2|5=21+2k -1+4k 251+4k 2.又|AB |=22+12=5, 所以四边形AEBF 的面积为S =12|AB |·(h 1+h 2)=12·5·41+2k 51+4k 2=21+2k 1+4k 2=21+4k 2+4k1+4k 2=21+4k 1+4k 2=21+41k+4k ≤22,当且仅当1k =4k ,即k =12时取等号.因此四边形AEBF 的面积的最大值为2 2. 法二:依题意得椭圆的方程为x 24+y 2=1.直线EF 的方程为y =kx (k >0). 设点E (x 1,kx 1),F (x 2,kx 2),其中x 1<x 2. 联立⎩⎪⎨⎪⎧y =kx ,x 24+y 2=1消去y ,(1+4k 2)x 2=4.故x 1=-21+4k 2,x 2=21+4k 2, |EF |=1+k 2·|x 1-x 2|=41+k 21+4k 2. 根据点到直线的距离公式,得点A ,B 到直线EF 的距离分别为d 1=|2k |1+k 2=2k1+k 2,d 2=11+k 2. 因此四边形AEBF 的面积为S =12|EF |·(d 1+d 2)=12·41+k 21+4k 2·1+2k 1+k 2=21+2k 1+4k 2=24k 2+4k +11+4k 2=21+4k1+4k 2=21+41k+4k ≤22, 当且仅当1k =4k ,即k =12时取等号.因此四边形AEBF 的面积的最大值为2 2. [题后悟通]如果利用常规方法理解为S 四边形AEBF =S △AEF +S △BEF =12|EF |·(d 1+d 2)(其中d 1,d 2分别表示点A ,B 到直线EF 的距离),则需要通过联立直线与椭圆的方程,先由根与系数的关系求出|EF |的弦长,再表示出两个点线距,其过程很复杂.而通过分析,若把四边形AEBF 的面积拆成两个小三角形——△ABE 和△ABF 的面积之和,则更为简单.因为直线AB 的方程及其长度易求出,故只需表示出点E 与点F 到直线AB 的距离即可.[针对训练]4.已知椭圆C :x 216+y 212=1的右焦点为F ,右顶点为A ,离心率为e ,点P (n,0)(n >4)满足条件|F A ||P A |=e .(1)求n 的值;(2)设过点F 的直线l 与椭圆C 相交于M ,N 两点,记△PMF 和△PNF 的面积分别为S 1,S 2,求证:S 1S 2=|PM ||PN |.解:(1)依题意,|F A ||P A |=e =12,|F A |=2,|P A |=n -4(n >4),得2n -4=12,解得n =8.(2)证明:由S 1=12|PF ||PM |sin ∠MPF ,S 2=12|PF ||PN |sin ∠NPF ,则S 1S 2=12|PF ||PM |sin ∠MPF12|PF ||PN |sin ∠NPF =|PM |sin ∠MPF |PN |sin ∠NPF. 设直线l 的方程为x =my +2,M (x 1,y 1),N (x 2,y 2),又P (8,0), 则k PM +k PN =y 1x 1-8+y 2x 2-8=y 1x 2-8+y 2x 1-8x 1-8x 2-8=x 2y 1+x 1y 2-8y 1+y 2x 1x 2-8x 1+x 2+64 =my 2+2y 1+my 1+2y 2-8y 1+y 2my 1+2my 2+2-8[m y 1+y 2+4]+64=2my 1y 2-6y 1+y 2m 2y 1y 2-6m y 1+y 2+36.联立⎩⎪⎨⎪⎧x =my +2,3x 2+4y 2=48,消去x 并整理得(3m 2+4)y 2+12my -36=0, 所以⎩⎪⎨⎪⎧y 1+y 2=-12m 3m 2+4,y 1y 2=-363m 2+4,所以k PM +k PN =-72m 3m 2+4+72m 3m 2+4-36m 23m 2+4+72m 23m 2+4+36=0,则∠MPF =∠NPF ,因此S 1S 2=|PM ||PN |.[总结规律·快速转化]做数学,就是要学会翻译,把文字语言、符号语言、图形语言、表格语言相互转换,我们要学会对解析几何问题中涉及的所有对象逐个理解、表示、整理,在理解题意的同时,牢记解析几何的核心方法是“用代数方法研究几何问题”,核心思想是“数形结合”,牢固树立“转化”意识,那么就能顺利破解解析几何的有关问题.附几种几何条件的转化,以供参考:1.平行四边形条件的转化2.直角三角形条件的转化3.等腰三角形条件的转化4.菱形条件的转化5.圆条件的转化6.角条件的转化。