Ch 8 实数基本定理计划课时:8 时§ 0 连续统假设简介(2 时)一.数的发展简史:参阅《数学分析》选讲讲稿P66—76(1997. 8.10 ).1.自然数的产生: 十九世纪数学家Leopold Kronecker说: 上帝创造了整数, 其余则是我们人类的事了.2.从自然数系到有理数系:3.算术连续统假设的建立及其破灭:不可公度性的发现及其深远影响.Pythagoras(约在纪元前六世纪),Hippasus,Leonardo da Vinci 称为“无理的数”. Eudoxus , Euclid.4.微积分的建立:Newton , Leibniz ; Euler , Lagrange , D′Alembert , Laplace ;Voltaire , B. Berkeley .十九世纪分析学理论的重建工作: B.Bolzano , A.Cauchy , Abel , Dirichlet, Weierstrass .Archimedes数域.5.实数系的建立:十九世纪后半叶由Weierstrass , Meray , Dedekind , Cantor 等完成.二. 连续统假设:1.连续统假设: 以Cantor实数为例做简介.Cauchy ( 1789—1857, 法 ), Bolzano (1781—1845 ), Cantor ( 1829—1920 ).在他们的著作中表现了实数连续性的观点. 1900年, 哥庭根大学教授Hilbert( 1862—1943, 德 )在巴黎国际数学家代表大会上的致辞中 , 提出了二十三个研究课题 , 其中的第一题就是所谓连续统假设.首当其冲的是关于连续统观点的算术陈述.( 参阅 D.J.斯特洛伊克著《数学简史》P160—161 ).连续统假设的研究现况.2.实数基本定理:连续统假设的等价命题. 共有九个定理, 我们介绍其中的七个. 另外还有上、下极限定理和实数完备性定理.§ 1 实数基本定理的陈述( 4 时)一.确界存在定理:回顾确界概念.Th 1 非空有上界数集必有上确界;非空有下界数集必有下确界.二.单调有界原理: 回顾单调和有界概念.Th 2 单调有界数列必收敛.三. Cantor 闭区间套定理 :1. 区间套: 设} ] , [ {n n b a 是一闭区间序列. 若满足条件ⅰ> 对n ∀, 有 ] , [11++n n b a ⊂] , [n n b a , 即 n n n n b b a a ≤<≤++11, 亦即 后一个闭区间包含在前一个闭区间中 ;ⅱ> ,0→-n n a b )(∞→n . 即当∞→n 时区间长度趋于零.则称该闭区间序列为一个递缩闭区间套, 简称为区间套 .简而言之, 所谓区间套是指一个 “闭、缩、套” 区间列.区间套还可表达为:, 1221b b b a a a n n ≤≤≤≤<≤≤≤≤ ,0→-n n a b)(∞→n . 我们要提请大家注意的是, 这里涉及两个数列} {n a 和 } {n b , 其中} {n a 递增, } {n b 递减.例如 } ] 1 , 1 [ {n n -和} ] 1 , 0 [ {n都是区间套. 但} ] 21 , ) 1 (1 [ {n n n +-+、 } ] 1 , 0 ( {n 和 } ] 11 , 1 [ {nn +-都不是. 2. Cantor 区间套定理:Th 3 设} ] , [ {n n b a 是一闭区间套. 则存在唯一的点ξ,使对n ∀有∈ξ] , [n n b a . 简言之, 区间套必有唯一公共点.四. Cauchy 收敛准则 —— 数列收敛的充要条件 :1.基本列 : 回顾基本列概念 . 基本列的直观意义 . 基本列亦称为Cauchy 列.例1 验证以下两数列为Cauchy 列 :⑴ n n n x 9.0sin 9.09.0sin 9.09.0sin 9.02+++= .⑵ 12) 1 (513111--+-+-=+n a n n . 解 ⑴ ≤++=-+++++ | 9.0sin 9.09.0sin 9.0| ||11p n p n n n n p n x x<++≤++ 9.09.01p n n +++++ 9.09.01p n n 119.0109.019.0++⨯=-=n n ; 对0>∀ε,为使 ε ||<-+n p n x x ,易见只要 9.0lg 10lg 1ε>+n . 于是取 =N .⑵ 1)(2)1(32)1(12)1(||132-+-+++-++-=-+++++p n n n a a p n n n n p n 1)(2)1(3211211-+-+++-+=+p n n n p . 当p 为偶数时 , 注意到上式绝对值符号内有偶数项和下式每个括号均为正号 , 有 =-+-++-+1)(21321121p n n n 0 1)(213)(21721521321121≥⎪⎪⎭⎫ ⎝⎛-+--+++⎪⎭⎫ ⎝⎛+-++⎪⎭⎫ ⎝⎛+-+p n p n n n n n , 又 =-+-++-+1)(21321121p n n n ≤-+-⎪⎪⎭⎫ ⎝⎛-+--+--⎪⎭⎫ ⎝⎛+-+-+=1)(213)(215)(21521321121p n p n p n n n n 121+≤n . 当p 为奇数时 , =-+-++-+1)(21321121p n n n0 1)(213)(215)(21321121≥-++⎪⎪⎭⎫ ⎝⎛-+--+++⎪⎭⎫ ⎝⎛+-+=p n p n p n n n ,=-+-++-+1)(21321121p n n n 121 1)(213)(21521321121+≤⎪⎪⎭⎫ ⎝⎛-+--+--⎪⎭⎫ ⎝⎛+-+-+=n p n p n n n n . 综上 , 对任何自然数p , 有 121 1)(2)1(32112101+≤-+-+++-+≤+n p n n n p n1 <. ……Cauchy 列的否定:例2 ∑==nk n k x 11 . 验证数列}{n x 不是Cauchy 列. 证 对n ∀, 取n p =, 有 212 12111||=>++++++=-+n n n n n n x x n p n . 因此, 取210=ε ,…… 2. Cauchy 收敛原理:Th 4 数列} {n a 收敛 ⇔ } {n a 是Cauchy 列.( 要求学生复习函数极限、函数连续的Cauchy 准则,并以Cauchy 收敛原理为依据,利 用Heine 归并原则给出证明 )五. 致密性定理:数集的聚点(亦称为接触点):定义 设E 是无穷点集. 若在点ξ(未必属于E )的任何邻域内有E 的无穷多个点, 则称点ξ为E 的一个聚点.数集E =} 1{n有唯一聚点0, 但E ∉0; 开区间 ) 1 , 0 (的全体聚点之集是闭区间 ] 1 , 0 [; 设Q 是] 1 , 0 [中全体有理数所成之集, 易见Q 的聚点集是闭区间] 1 , 0 [.1.列紧性: 亦称为Weierstrass 收敛子列定理. Th 5 ( Weierstrass ) 任一有界数列必有收敛子列.2. 聚点原理 : Weierstrass 聚点原理.Th 6 每一个有界无穷点集必有聚点.六. Heine –Borel 有限复盖定理:1. 复盖: 先介绍区间族} , {Λ∈=λλI G .定义( 复盖 ) 设E 是一个数集 , G 是区间族 . 若对∍Λ∈∃∈∀ , , λE x λI x ∈, 则称区间族G 复盖了E , 或称区间族G 是数集E 的一个复盖. 记为. ,Λ∈⊂λλλI E 若每个λI 都是开区间, 则称区间族G 是开区间族 . 开区间族常记为} , , ) , ( { Λ∈<=λβαβαλλλλM .定义( 开复盖 ) 数集E 的一个开区间族复盖称为E 的一个开复盖, 简称为E 的一个复盖.子复盖、有限复盖、有限子复盖.例3 } ) 1 , 0 ( ), 23 , 2 ( {∈=x x x M 复盖了区间) 1 , 0 (, 但不能复盖] 1 , 0 [; } ) , ( , ) 2, 2 ( {b a x x b x x b x H ∈-+--=复盖) , [b a , 但不能复盖] , [b a .2.Heine –Borel 有限复盖定理:Th 7 闭区间的任一开复盖必有有限子复盖.. § 2 实数基本定理等价性的证明 ( 4 时 )证明若干个命题等价的一般方法.本节证明七个实数基本定理等价性的路线 : 证明按以下三条路线进行:Ⅰ: 确界原理 ⇒ 单调有界原理 ⇒ 区间套定理 ⇒ Cauchy 收敛准则 ⇒ 确界原理 ;Ⅱ: 区间套定理 ⇒ 致密性定理 ⇒ Cauchy 收敛准则 ;Ⅲ: 区间套定理 ⇒ Heine –Borel 有限复盖定理 ⇒ 区间套定理 .一. “Ⅰ” 的证明: (“确界原理 ⇒ 单调有界原理”已证明过 ).1. 用“确界原理”证明“单调有界原理”:Th 2 单调有界数列必收敛 .证2. 用“单调有界原理”证明“区间套定理”:Th 3 设} ] , [ {n n b a 是一闭区间套. 则存在唯一的点ξ,使对n ∀有∈ξ] , [n n b a . 证系1 若∈ξ] , [n n b a 是区间套} ] , [ {n n b a 确定的公共点, 则对0>∀ε, ,N ∃ 当N n >时, 总有] , [n n b a ) , (εξ ⊂.系2 若∈ξ] , [n n b a 是区间套} ] , [ {n n b a 确定的公共点, 则有n a ↗ξ, n b ↘ξ, ) (∞→n .3. 用“区间套定理”证明“Cauchy 收敛准则”:Th 4 数列} {n a 收敛 ⇔ } {n a 是Cauchy 列.引理 Cauchy 列是有界列. ( 证 )Th 4 的证明: ( 只证充分性 ) 教科书P 217—218上的证明留作阅读 . 现采用[3]P 70—71例2的证明, 即三等分的方法, 该证法比较直观.4. 用“Cauchy 收敛准则” 证明“确界原理” :Th 1 非空有上界数集必有上确界 ;非空有下界数集必有下确界 .证 (只证“非空有上界数集必有上确界”)设E 为非空有上界数集 . 当E 为有限集时 , 显然有上确界 .下设E 为无限集, 取1a 不是E 的上界, 1b 为E 的上界. 对分区间] , [11b a , 取] , [22b a , 使2a 不是E 的上界, 2b 为E 的上界. 依此得闭区间列 } ] , [ {n n b a . 验证} {n b 为Cauchy 列, 由Cauchy 收敛准则,} {n b 收敛; 同理} {n a 收敛. 易见n b ↘. 设n b ↘β.有 n a ↗β.下证β=E sup .用反证法验证β的上界性和最小性.二. “Ⅱ” 的证明:1. 用“区间套定理”证明“致密性定理”:Th 5 ( Weierstrass ) 任一有界数列必有收敛子列.证 ( 突出子列抽取技巧 )Th 6 每一个有界无穷点集必有聚点.证 ( 用对分法 )2.用“致密性定理” 证明“Cauchy 收敛准则” :Th 4 数列} {n a 收敛 ⇔ } {n a 是Cauchy 列.证 ( 只证充分性 )证明思路 :Cauchy 列有界→ 有收敛子列→验证收敛子列的极限即为} {n a 的极限.Ex [1]P 223—224 1—7,11.三. “Ⅲ” 的证明:1. 用“区间套定理”证明“Heine –Borel 有限复盖定理”:证2. 用“Heine –Borel 有限复盖定理” 证明“区间套定理”:证 采用[3]P 72例4的证明.Ex [1]P 224 8—12 选做,其中 1 0 必做.§ 3 闭区间上连续函数性质的证明 ( 4 时 )一. 有界性:命题1 ] , [)(b a C x f ∈, ⇒ 在] , [b a 上)(x f =) 1 (O .证法 一 ( 用区间套定理 ). 反证法.证法 二 ( 用列紧性 ). 反证法.证法 三 ( 用有限复盖定理 ).二. 最值性:命题2 ] , [)(b a C x f ∈, ⇒ )(x f 在] , [b a 上取得最大值和最小值.( 只证取得最大值 )证 ( 用确界原理 ) 参阅[1]P 226[ 证法 二 ]后半段.三. 介值性: 证明与其等价的“零点定理 ”.命题3 ( 零点定理 )证法 一 ( 用区间套定理 ) .证法 二 ( 用确界原理 ). 不妨设,0)(>a f 0)(<b f .令} ] , [ , 0)( | {b a x x f x E ∈>=, 则E 非空有界, ⇒ E 有上确界. 设E sup =ξ, 有∈ξ] , [b a . 现证 0)(=ξf , ( 为此证明)(ξf 0≥且)(ξf 0≤ ). 取n x >ξ 且 n x ) ( ,∞→→n ξ. 由)(x f 在点ξ连续和0)(≤n x f , ⇒ 0)(l i m )(≤=∞→n n x f f ξ, ⇒ ξE ∉. 于是) ( , ∞→→∍∈∃n t E t n n ξ. 由)(x f 在点ξ连续和0)(>n t f , ⇒ 0)(lim )(≥=∞→n n t f f ξ. 因此只能有0)(=ξf . 证法 三 ( 用有限复盖定理 ).Ex [1]P 232 1,2,5.四. 一致连续性:命题4 ( Cantor 定理 )证法 一 ( 用区间套定理 ) . 参阅[1]P 229—230 [ 证法一 ]证法 二 ( 用列紧性 ). 参阅[1]P 229—230 [ 证法二 ]Ex [1]P 232 3,4, 6*;P 236 1,2,4.习 题 课 ( 4 时 )一. 实数基本定理互证举例:例1 用“区间套定理”证明“单调有界原理”.证 设数列} {n x 递增有上界. 取闭区间 ] , [11b a , 使1a 不是} {n x 的上界, 1b 是} {n x 的上界. 易见在闭区间 ] , [11b a 内含有数列} {n x 的无穷多项, 而在] , [11b a 外仅含有} {n x 的有限项. 对分] , [11b a , 取] , [22b a 使有] , [11b a 的性质.…….于是 得区间套] , [ {n n b a },有公共点ξ. 易见在点ξ的任何邻域内有数列} {n x 的无穷多项 而在其外仅含有} {n x 的有限项, ⇒ ξ=∞→n n x lim . 例2 用“确界原理”证明“区间套定理”.证 ] , [ {n n b a }为区间套. 先证每个m a 为数列} {n b 的下界, 而每个m b 为数列 的上界. 由确} {n a 界原理 , 数列} {n a 有上确界, 数列} {n b 有下确界 . 设 inf =α} {n b , sup =β} {n a .易见有n n b a ≤≤α 和n n b a ≤≤β. 由) ( , 0∞→→-n a b n n ,βα=⇒. 例3 用“有限复盖定理”证明“聚点原理”.证 ( 用反证法 ) 设S 为有界无限点集, ] , [b a S ⊂. 反设] , [b a 的每一点 都不是S 的聚点, 则对∈∀x ] , [b a , 存在开区间 ) , (x x βα, 使在) , (x x βα内仅 有S 的有限个点. …… .例4 用“确界原理”证明“聚点原理”.证 设S 为有界无限点集. 构造数集 E x E | {=中大于x 的点有无穷多个}.易见数集E 非空有上界, 由确界原理, E 有上确界. 设 E sup =β. 则对0 >∀ε,由εβ-不是E 的上界,⇒ E 中大于εβ-的点有无穷多个; 由εβ+是E 的上界,⇒ E 中大于εβ+的点仅有有限个. 于是, 在) , (εβεβ+-内有E 的无穷多个点,即β是E 的一个聚点 .二. 实数基本定理应用举例:例5 设)(x f 是闭区间] , [b a 上的递增函数, 但不必连续 . 如果a a f ≥)(, b b f ≤)(, 则∈∃0 x ] , [b a , 使00)(x x f =. ( 山东大学研究生入学试题 )证法 一 ( 用确界技术 . 参阅[3] P 76例10 证法1 )设集合 } , )( | {b x a x x f x F ≤≤≥=. 则F a ∈, F 不空 ; F ⊂] , [b a , F 有界 .由确界原理 ,F 有上确界. 设F x sup 0=, 则∈0x ] , [b a .下证00)(x x f =.ⅰ> 若∈0x F , 有00)(x x f ≥; 又b b f x f ≤≤)()(0, 得∈)(0x f ] , [b a . 由 )(x f 递增和00)(x x f ≥, 有≥))((0x f f )(0x f , 可见)(0x f ∈F . 由F x sup 0=, ⇒ )(0x f 0x ≤. 于是 , 只能有00)(x x f =.ⅱ> 若∉0x F , 则存在F 内的数列} {n x , 使n x ↗0x , ) (∞→n ; 也存在数列 } {n t , ,0b t x n ≤< n t ↘0x ,) (∞→n . 由f 递增, F x n ∈以及n t F ∉, 就有式 n n n n t t f x f x f x <≤≤≤)()()(0对任何n 成立 . 令 ∞→n , 得,)(000x x f x ≤≤ 于是有00)(x x f =.证法二 ( 用区间套技术, 参阅[3] P 77例10 证法2 ) 当a a f =)(或b b f =)(时,a 或b 就是方程x x f =)(在] , [b a 上的实根 . 以下总设b b f a a f <>)( ,)(. 对分区间] , [b a , 设分点为 c . 倘有c c f =)(, c 就是方程x x f =)(在] , [b a 上的实根.(为行文简练计, 以下总设不会出现这种情况 ) . 若c c f >)(, 取b b c a ==11 , ; 若c c f <)(, 取c b a a ==11 , , 如此得一级区间 ] , [11b a . 依此构造区间套] , [ {n n b a }, 对n ∀,有 n n n n b b f a a f <>)( , )(. 由区间套定理, 0 x ∃, 使对任何n , 有] , [0n n b a x ∈. 现证00)(x x f =. 事实上, 注意到 ∞→n 时n a ↗0x 和n b ↘0x 以 及f 递增, 就有n n n n b b f x f a f a <≤≤<)()()(0.令 ∞→n , 得,)(000x x f x ≤≤于是有00)(x x f =.例6 设在闭区间] , [b a 上函数)(x f 连续, )(x g 递增 , 且有)()(a g a f <,)()(b g b f >. 试证明: 方程 )()(x g x f =在区间 ) , (b a 内有实根 .( 西北师大2001年硕士研究生入学试题 )证 构造区间套] , [ {n n b a },使 )()( , )()(n n n n b g b f a g a f ><.由区间套定理,ξ ∃, 使对n ∀, 有ξ∈] , [ n n b a . 现证 )()(ξξg f =. 事实上, 由)(x g 在] , [b a 上的递增性和] , [ n n b a 的构造以及n a ↗ξ和n b ↘ξ,, 有)()( )g( )()(n n n n b f b g a g a f <≤≤<ξ.注意到)(x f 在点ξ连续,由Heine 归并原则, 有)()(lim ξf a f n n =∞→, ).()(lim ξf b f n n =∞→ ⇒ )()()(ξξξf g f ≤≤, ⇒ )()(ξξg f =. ξ为方程)()(x g x f =在区间 ) , (b a内的实根.例7 试证明: 区间 ] 1 , 0 [上的全体实数是不可列的 .证 ( 用区间套技术, 具体用反证法 ) 反设区间 ] 1 , 0 [上的全体实数是可列的,即可排成一列:,,,,21n x x x把区间 ] 1 , 0 [三等分,所得三个区间中至少有一个区间不含1x ,记该区间为一级区间] , [11b a . 把区间] , [11b a 三等分,所得三个区间中至少有一个区间不含2x ,记该区间为二级区间] , [22b a . …… .依此得区间套] , [ {n n b a }, 其中区间] , [ n n b a 不含n x x x ,,,21 . 由区间套定理, ξ ∃, 使对n ∀, 有ξ∈] , [ n n b a . 当然有ξ∈] 1 , 0 [. 但对, n ∀ 有 ∉n x ] , [ n n b a 而ξ∈] , [ n n b a , ⇒ ξ≠n x . 矛盾 .。