压电、热释电与铁电材料
上述坐标是以四方相的原胞边长为单位, a=3.99Å,b=4.03Å。氧离子的相对位移情 况如图所示。从图可见,Ti沿c轴正向移动, OI沿c轴负向移动,因而Ti和“上”方OI间 距缩短,和“下”方的OI间距伸长。
把OII的位臵取在c/2处作为相对位移的基 准,室温下得到的衍射数据列于表8—1 中;在正交相中,Ba、Ti和O的相对位移 列于表8—2中。
居里-外斯常数的大小
按居里-外斯常数的大小分类,这种分类法有利于研究 铁电体的相变机制。居里-外斯常数C 大约在105数量 级的为第一类。这类铁电体的微观相变机制属于位移 型,它主要包括钛酸钡等氧化物形铁电体。近来发现 的SbSI是这一类中的唯一例外,它不是氧化物。C 大 约在103数量级的为第二类,这类铁电体的微观相变机 制属于有序-无序型,主要包括KDP、TGS、罗息盐和 NaNO2等。C数量级大约在10的为第三类铁电晶体, 属于这一类的典型晶体是(NH4)2Cd2(SO4)3。这类铁 电体的相变机制目前尚未详细研究,也无专门的名称。
立方相 -> BaTiO3
<- 四方相
<- 立方相
PbTiO3
<- 四方相
在温度低于1460℃,高 于120℃时,BaTiO3属于 立方晶系m3m点群,不 具有铁电性。温度降至 120℃时,其结构转变 为四方晶系4mm点群,c 轴略有伸长, c/a≈1.01.自发极化沿 c轴方向具有明显的铁 电性质。
铁电晶体的分类
至今已经发现的铁电晶体有一千多种。 它们广泛地分布于从立方晶系到单斜晶系 的10个点群中。 它们的自发极化强度从10-4C/m2到1C/m2; 它们的居里点有的低到-261.5C(酒石酸 铊锂),有的高于1500C。
单轴铁电体,多轴铁电体
根据铁电体的极化轴的多少分为两类。一 类是只能沿一个晶轴方向极化的铁电体, 如罗息盐以及其它酒石酸盐,磷酸二氢钾 型铁电体,硫酸铵以及氟铍酸铵等。另一 类是可以沿几个晶轴方向极化的铁电体 (在非铁电相时这些晶轴是等效的),如 钛酸钡、铌酸钾、钾铵铝矾等。这种分类 方法便于研究铁电畴。
电畴与晶体对称性
按照软模理论,铁电有序是软模(光 学横模或赝自旋波)冻结的结果。该 软模的波矢为零,故整个晶体呈现均 匀极化,全部偶极子沿同一方向(特 殊极性方向)排列。 这种单畴晶体的对称性即为铁电相的 对称性。
但是我们知道,在顺电相中,有若干个 方向与极化强度出现的方向对称性等效。 因为这些方向在晶体学上和物理性质方 面都是等同的,可以预料,晶体各部分 的自发极化沿这些方向取向的概率是相 等的。这表明铁电体将分成为电畴,而 且从整体上看,多畴晶体的对称性等于 顺电相的对称性。
表:
-10℃时BaTiO3原胞中各离子沿c轴方向的相对位移和Ti-O
键间距(δXOII =0)
位移(Å)
Ti-O键间距(Å) 晶格常数(Å)
δXOI +0.07 δXTi +0.13 δXBa +0.02
Ti-OII Ti-OII Ti-OI
1.90 2.11 2.00
a=5.682 b=5.669 c=3.990
铁电的理论解释
钛酸钡的Slater理论 KDP 的Slater理论
Slater-Devonshire theory for BaTiO3
BaTiO3的稳定态是钙钛矿结构,120C以下 显示出铁电性。钙钛矿结构的化学分子式为 ABO3,其中A代表二价或一价金属,B四价或 五价金属;其结构特点是具有氧八面体结构, 在氧八面体中央为半径较小的金属离子,而 氧又被挤在半径较大的金属离子中间。
是否有对称中心
根据铁电体在非铁电相有无对称中心亦可 分为两类。一类铁电体在其顺电相的晶体 结构不具有对称中心,因而有压电效应。 如钽铌酸锂、罗息盐、KDP族晶体。另一类 铁电体,其顺电相的晶格结构具有对称中 心,因而不具有压电效应,如钛酸钡、铌 酸钾以及它们的同类型晶体。这种分类方 法便于铁电相变的热力学处理。
主要特征 电滞回线hysteresis loop 居里温度Curie temperature c 介电反常Dielectric anomalous
电滞回线 hysteresis loop
自发极化Ps 剩余极化Pr 矫顽电场Ec
静态畴结构及其形成原因
铁电晶体在没有外电场和外力作用下从 顺电相过渡到铁电相时,将出现至少两 个等价的自发极化方向,以便使晶体的 总自由能最小。因此,晶体在铁电相通 常是由自发极化方向不同的一个一个小 区域组成。每一个极化方向相同的小区 域称为铁电畴,分离电畴的边界称为畴 壁。Domain wall
成分和结构
根据晶体成分和结构特征,可把铁电晶体 分成两类。一类是含有氢键的晶体,如KDP 族、TGS、罗息盐等。这类晶体的特点是可 溶于水、力学性质软、居里点温度低、溶 解温度低,常称“软”铁电体。另一类是 双氧化物晶体,如钛酸钡、铌酸锂等晶体。 它们的特点是不溶于水、力学性质硬、居 里点温度高、溶解温度高,常称为“硬” 铁电体。
当温度降至0℃(±5℃) 附近,晶格结构转变为 正交晶系2mm点群,具有 铁电性,自发极化沿原 来立方晶胞的[011]方向。 通常把正交晶系的a轴取 在极化方向上,正交晶 系的b轴取相邻立方晶胞 的[01]方向,并于a轴垂 直,c轴垂直于a轴和b轴 并平行与原立方晶胞 [100]方向。
当温度降至-80℃时,晶格结构变为三角晶 系的3m点群,仍具有铁电性,自发极化沿 原立方晶胞的[111]方向。三角晶胞的三个 边相等,a=b=c,角α=89°52’。 BaTiO3在 不同温度范围内的单位晶胞和自发极化方 向的改变示于图8—2中。图(b)(c)(d)中的 虚线表示原顺电相时的立方晶胞,粗箭头 表示自发极化的方向。
上世纪70年代初期,人们在锆钛酸铅材料二 元系配方Pb(ZrTi)O3大基础上又研究了加入 第三元改性的压电陶瓷三元系配方,如铌镁 酸铅系为Pb(Mg1/3Nb2/3)(ZrTi)O3,可广泛用 于拾音器、微音器、滤波器、变压器、超声 延迟线及引燃引爆方面。如铌锌酸铅系 Pb(Zn1/3Nb2/3)(ZrTi)O3,主要用来制造性能 优良的陶瓷滤波器及机械滤波器的换能器。
钙钛矿化合物大多数具有铁电性(如 PbTiO3、KNbO3 和KTaO3等),可能与结构 上的这些特点有关。 钙钛矿结构的铁电晶体其顺电—铁电相 变都是属于位移相变,而是BaTiO3位移型 铁电体的典型代表。
在BaTiO3晶体中,氧形成氧八面体,氧离子 半径较小,氧的离子半径RO=1.32Å。四价 金属离子Ti4+位于氧八面体中心, RTi=0.64Å。二价金属离子Ba2+位于氧八面 体之间的间隙里,离子半径较大, RBa=1.43Å。
1955年,美国B.Jaffe等人发现了比BaTiO3 压电性更优越的PZT压电陶瓷,促使压电器 件的应用研究又大大地向前推进了一大步。 BaTiO3时代难于实用化的一些用途,特别 是压电陶瓷滤波器和谐振器,随着PZT的问 世,而迅速地实用化,应用声表面波(SAW) 的滤波器、延迟线和振荡器等SAW器件,在 七十年代后期也取得了实用化。
下图是180畴壁和90畴壁
钛酸钡畴结构
反铁电体
反铁电体是这样一些晶体,晶体结构与同 型铁电体相近,但相邻离子沿反平行方向 产生自发极化,净自发极化强度为零,不 存在类似于铁电中的电滞回线。介电常数 (或极化率)与温度的关系为:在相变温 度以下,介电常数很小,一般数量级为10102;在相变温度时,介电常数出现峰值, 一般数量级为几千。在相变温度以上,介 电常数与温度的关系遵从居里-外斯定律。
关于BaTiO3铁电性的起因人们曾提出过多种 微观模型。其中比较突出的有: 钛离子多个平衡位臵的自发极化理论,认 为BaTiO3在其顺电相结构中钛离子具有多 个平衡位臵,在温度低于居里点时,钛离 子占据某个平衡位臵几率大得多,因而出 现自发极化;
钛--氧离子之间的强耦合理论,认为自发 极化的产生是由于钛--氧离子之间存在着 很强的相互作用场所致; 此外换有氧离子位移的自发极化理论;振 动电子理论;价键性质转变理论(认为共 价性增强,离子性减弱)等。 这些理论各有其不足和成功之处,本节不 在一一介绍。
表:室温下BaTiO3原胞中各离子沿c轴的位移和离子间距
位移(Å)
Ti-O键间距(Å) Ba-O键间距(Å)
δZOI -0.04 δZTi +0.01 δZBa +0.05
Ti-OI (上) 1.86 Ti-OI(下) 2.17 Ti-OII 2.00
Ba-OI Ba-OII Ba-OII
2.82 2.80 2.88
后来,人们又在三元系压电陶瓷 配方基础上又研究了四元系压电陶瓷材 料,如: Pb(Ni1/3Nb2/3)(Zn1/3Nb2/3)(ZrTi)O3, Pb(Mn1/2Ni1/2)(Mn1/2Zr1/2)(ZrTi)O3等, 可用来制造滤波器和受话器等。
什么是铁电体
铁电体主要特征
典型的铁电材料的主要物理性质
铁电材料的分类
反铁电体
基本定义
具有自发极化强度(Ps)Spontaneous
Polarization
自发极化强度能在外加电场下反转,
Switchable
Ps
Note:
铁电体与铁磁体在其它许多性质上也具有相 应的平行类似性,“铁电体”之名即由此而 来,其实它的性质与“铁”毫无关系。在欧 洲(如法国、德国)常称“铁电体”为“薛 格涅特电性”(Seignett-electricity)或 “罗息尔电性”(Rochell-electricity)。 因为历史上铁电现象是首先于1920年在罗息 盐中发现的,而罗息盐是在1665年被法国药 剂师薛格涅特在罗息这个地方第一次制备出 来。
x-射线分析表明,在相变温度以下,反铁 电体中存在超结构线(即附加的衍射线)。 这种超结构表示反铁电体中,晶体结构是 由两种子晶格交错而成的,而子晶格之间 沿相反方向极化。