当前位置:文档之家› 热传导原理

热传导原理

第一节 热传导一、傅立叶定律如图4—1所示,热能总是朝温度低的方向传导,而导热速率dQ 则和温度梯度n t∂∂以及垂直热流方向的截面dA 成正比:dQ=-dA n t∂∂λ(4—1)式中负号表示dQ 与n t∂∂的方向相反,比例系数λ称为导热系数。

根据傅立叶定律(4—1)可以导出各种情况下的热传导计算公式。

图4—1 温度梯度与 图4—2单层平壁的 热流方向的关系 稳定热传导 二、导热系数导热系数的定义式为:n t dAdQ ∂∂=λ(4—2)导热系数在数值上等于单位导热面积、单位温度梯度下在单位时间内传导的热量,这也是导热系数的物理意义。

导热系数是反映物质导热能力大小的参数,是物质的物理性质之一。

导热系数一般用实验方法进行测定。

通常金属导热系数最大,非金属固体的导热系数较小,液体更小,而气体的导热系数最小。

因而,工业上所用的保温材料,就是因为其空隙中有气体,所以其导热系数小,适用与保温隔热。

三、平壁的稳定热传导 (一) (一)单层平壁如图4—2所示,平壁内的温度只沿垂直于壁面的x 方向变化,因此等温面都是垂直于x 轴的平面。

根据傅立叶定律可由下式求算:导热热阻导热推动力=∆=-=-=R t A b t t t t bAQ λλ2121)((4—3)利用上式可解决热传导量(或热损失)Q ;保温材料厚度b ; 外侧温度t 2;结合热量衡算式可进行材料导热系数λ的测定。

设壁厚x 处的温度为t ,则可得平壁内的温度分布关系式(4—4),表示平壁距离和等温面t 两者的关系为直线关系。

A Qxt t λ-=1(4—4)(二) 多层平壁在稳定导热情况下,通过各层平壁的热速率必定相等,即 Q 1= Q 2=Q Q n == 。

则通过具有n 层的平壁,其热传导量的计算式为:R tAb t t Q i i ni n ∑∆∑=-=∑=+导热总热阻导热总推动力λ111(4—5)热阻大的保温层,分配于该层的温度差亦大,即温度与热阻成正比。

四、圆筒壁的稳定热传导 (一) (一)单层圆筒壁 如图4—3第二节 两流体间的对流传热一、对流传热的基本概念依靠流体质点相对位移(即运动)而传递热量称之为对流传热,所以它与流体流动状况密切相关。

由于内摩擦力粘性的存在,靠近管壁处有一层滞流内层(也称层流底层),该层流体层之间平行流动,以导热方式传热。

层流内层外侧有过渡区,然后湍流主体区,该区流体质点剧烈湍动,各部分充分 混合,流速趋于一致,温度也趋于一致。

温度变化的阻力所在主要为层流内层区。

图4—4表示对流传热时 A —A 截面上的温度分布情况。

影响对流传热的因素很多,目前采用的一种简化方式,即将对流传热的全部温度差都集中在厚度为t δ的有效膜内。

由于厚度t δ难以测定,常把主体区的湍流传热与层流区的导热合并起来考虑,称为对流传热,其表达式为牛顿冷却定律。

当流体被冷却时R tA T T A T T T T A Q t w w w ∆=-=-=-=λδαα1)((4—10)式中α为对流传热系数,它是反映对流传热的强度。

对流传热的热阻主要集中在滞流内层内,减薄滞流内层的厚度是强化对流传热的重要途径。

牛顿冷却定律所描述的对流传热模型,不仅将实际情况大为简化,且可以清楚表明对流传热过程的特点。

二、影响对流传热系数的主要因素实验表明,影响对流传热系数的主要因素有: (1) (1) 流体的状态; (2) (2) 流体的物理性质; (3) (3) 流体的运动状况; (4) (4) 流体对流的状况;(5) (5) 传热表面的形状、位置及大小。

对流传热系数的确定是个极其复杂的问题,影响因素很多,只能针对某些具体情况,用因此分析方法得出准数,再用实验确定准数间的具体关系,进而得到准数关联式加以表达。

三、使用α准数关联式应注意的问题α准数关联式是一种经验公式,使用时不能超出实验条件的范围。

用因此分析方法得到准数关系式为:),,(r r e u G P R f N =式中各准数的名称,符号及意义见下表表4—1 准数的名称、符号及意义1.1.应用范围各准数数值应与建立关联式的实验范围相一致。

2.2.特性尺寸对流传热过程发生主导影响的设备几何尺寸为特性尺寸。

关联式中各准数的特性尺寸L ,应遵照所选用的关联式中的规定尺寸。

3.3.定性温度确定准数中流体的物性参数所依据的温度为定性温度。

不同关联式中的定性温度往往不同,有的用进出口温度的算术平均温度,有的用膜温等。

4.4.准数是一个无因次数群,故准数中的各物理量必须用同一的单位制度。

四、对流传热系数α的计算计算α的经验公式较多,现将不同情况下的对流传热,用图表4—2予以表示相互间关系第三节 传热基本方程及传热计算从传热基本方程m t kA Q ∆= (4-11)或传热热阻传热推动力=∆=kA t Q m 1 (4-11a)可知,要强化传热过程主要应着眼于增加推动力和减少热阻,也就是设法增大m t ∆或者增大传热面积A和传热系数K。

在生产上,无论是选用或设计一个新的换热器还是对已有的换热器进行查定,都是建立在上述基本方程的基础上的,传热计算则主要解决基本方程中的m t K A Q ∆,,,及有关量的计算。

传热基本方程是传热章中最主要的方程式。

一、传热速率Q的计算冷、热流体进行热交换时,当热损失忽略,则根据能量守恒原理,热流体放出热量h Q ,必等于冷流体所吸收的热量c Q ,即c n Q Q =,称之热量衡算式。

1. 1. 无相变化时热负荷的计算 (1) (1) 比热法()()1221t t c m T T c m Q pc c ph h -=-=(4-12)式中 Q ——热负荷或传热速率,J.s -1或W ; c h m m ,——热、冷流体的质量流量,kg.s -1;phpc c c ,——冷、热流体的定压比热,取进出口流体温度的算术平均值下的比热,k J.(kg.k )-1;21,T T ——热流体进、出口温度,K(°C ); 21,t t -冷流体的进出口温度,K(°C )。

(2)热焓法)(21I I m Q -= (4-13)式中 1I ——物料始态的焓,k J.kg -1; 2I ——物料终态的焓,k J.kg -1。

2.有相变化时热负荷计算Gr Q = (4-14)式中 G ——发生相变化流体的质量流量,kg.s -1; r ——液体汽化(或蒸汽冷凝)潜热,k J.kg -1。

注意:在热负荷计算时,必须分清有相变化还是无相变化,然后根据不同算式进行计算。

对蒸汽的冷凝、冷却过程的热负荷,要予以分别计算而后相加。

当要考虑热损失时,则有:损Q Q Q c h +=通常在保温良好的换热器中可取h Q Q )(损%5~2=三、平均温度差mt ∆的计算在间壁式换热器中,m t ∆的计算可分为以下几种类型: 1.1.两侧均为恒温下的传热两侧流体分别为蒸汽冷凝和液体沸腾时,温度不变,则:m t ∆=T-t =常数 2.2.一侧恒温一侧变温下的传热可推得计算式为:()()21212121ln ln t t t t t T t T t T t T t m ∆∆∆-∆=-----=∆ (4-15)式中m t ∆为进出口处传热温度差的对数平均值,温差大的一端为1t ∆,温差小的一端为2t ∆,从而使上式中分子分母均为正值。

当1t ∆/2t ∆≤2时,则:221t t t m ∆+∆=∆,即可用算术平均值。

3.3.两侧均为变温下的稳定传热其计算式与式(4-15)完全一致。

4.4.复杂流动时m t ∆的计算流体是复杂错流和折流时,其m t ∆的计算较为复杂,一般用下式计算: tm m t t ∆∆=∆ε逆系(4-16)式中 逆m t ∆——为按逆流操作情况下的平均温度差,t ∆ε——为校正系数,为P ,R 两因数的函数,即:t ∆ε=f (P ,R ),对于各种换热情况下的t ∆ε值,可在有关手册中查到。

m t ∆的计算要注意:(1) (1) 计算通常用式(4-15)所示的对数平均温度差,当1t ∆/2t ∆≤2时,可用算术平均值代替。

(2) (2) 为避免不同操作条件下的计算错误,最好用图示出流动方向并注明温度:1T 逆流 2T2t 1t 2t ∆ 1t ∆(3)当冷、热流体操作温度一定时,逆m t ∆总大于并m t ∆。

当要求传热速率一定时,逆流所需的设备投资费用及操作费用均少于并流,故工业生产的换热设备一般采用逆流操作。

四、总传热系数K 的确定总传热系数K 值有三个来源:一是选取经验值 ;二是实验测定值;三是计算。

1. 1. 换热器中总传热系数数值的大致范围换热器中总传热系数K 值,可参看天津大学编《化工原理》上册,P239表4-2及谭天恩等三人编《化工原理》上册P232表5-3。

K第四节 热辐射一、基本概念物体温度大于绝对零度即可向外发射辐射能,辐射能以电磁波的形式传递,当与另一物体相遇时,则可被吸收、反射、透过,其中吸收的部分又可将电磁波转变为热能。

这种与物体本身温度有关而引起的热量传播过程简称为热辐射。

总辐射能Q 为反射能量R Q 、吸收能量A Q 、透过能量D Q 之和。

Q=R Q +A Q +D QA Q /Q=A ,为物体吸收率,A=1的物体称为绝对黑体或黑体。

R Q /Q=R ,为物体反射率,R=1的物体称为绝对白体或镜体。

D Q /Q=D ,为物体透过率,D=1的物体称为透热体。

灰体是指对各种波长的辐射能具有相同的吸收率的理想物体。

注意:所谓黑体、白体,并非光学上的颜色的黑、白,如霜,光学上是白色,但其吸收率A=0.985。

黑体、白体决定于材料性质及表面粗糙度。

二、物体的辐射能力与斯蒂芬—菠尔茨曼定律1.斯蒂芬—菠尔茨曼定律该定律描述黑体的辐射能力与其表面温度(指绝对温度)的四次方成正比。

400100⎪⎭⎫⎝⎛=T C E (4-23)式中0C 为黑体的辐射系数,0C =5.669W.m -2.K -4。

2.实际物体的辐射能力工程上实际物体的辐射能力,用下式计算:E=400100⎪⎭⎫⎝⎛=T C E εε(4-24)式中ε为物体的黑度,为实际物体辐射能力与同温度下黑体的辐射能力之比。

其值由实验测定,可参看天津大学《化工原理》上册表4-10。

三、克希霍夫定律克希霍夫定律是研究灰体的辐射能力与其吸收率之间的关系。

该定律的表达式为:0E A E=(4-25)说明任何物体的辐射能力与其吸收率的比值恒为常数,且等于同温度下绝对黑体的辐射能力,其值仅与物体的温度有关。

ε==A E E(4-26)说明同一温度下,物体的吸收率与黑度在数值上相等。

三、两固体间的相互辐射工业上两固体间的相互辐射的计算是很复杂的,它不仅与两固体间的吸收率、反射率、形状及大小有关,而且与两者间距离和相互位置有关。

相关主题