金艳霞通信2班201203110210实验五Linux交叉编译平台一、实验目的1.掌握一些基本的linux读写操作2.利用vcc编译c程序3.通过nfs挂载到实验箱中,利用交叉编译执行文件二.实验设备1.Arm9试验箱2.Pc机3.Linux系统服务器三.实验过程及实验结果1.连接电脑箱2.设置交叉编译环境启动putty.exe登陆192.168.1.1163.添加软件包至实验目录:①[shiyan@localhost ~]$ cd /home/shiyan②[shiyan@localhost ~]$ tar –zxvf arm-linux-gcc-3.4.4-glib-2.3.5-static.tar.gztar -zxvf arm-linux-gcc-3.4.4-glib-2.3.5-static.tar.gz③[shiyan@localhost201203110210]$exportPATH=$PATH:/home/shiyan/201203110210/opt/crosstool/arm-linux/gcc-3.4.4-glib-2.3.5/arm-linux/bin④[shiyan@localhost 201203110210]$ setOSTYPE=linux-gnuPATH=/usr/lib/qt-3.3/bin:/usr/kerberos/bin:/usr/local/bin:/bin:/usr/bin:/home/shiya n/bin:/home/shiyan/opt/crosstool/arm-linux/gcc-3.4.4-glibc-2.3.5/arm-linux/bin:/ho me/shiyan/opt/crosstool/arm-linux/gcc-3.4.4-glibc-2.3.5/arm-linux/bin:/home/shiyan /opt/crosstool/arm-linux/gcc-3.4.4-glibc-2.3.5/arm-linux/bin可以看出路径已添加⑤[shiyan@localhost 201203110210]$ arm-linux-g再按tabarm-linux-g++ arm-linux-gcc arm-linux-gcc-3.4.4 arm-linux-gccbug arm-linux-gcov⑥[shiyan@localhost 201203110210]$ arm-linux-gccarm-linux-gcc: no input files此时出错,无此文件3.测试程序①创建hello.c[shiyan@localhost ~]$ vi hello.c#include<stdio.h>int main(){printf("jin123");return 0;}:wq②查看是否生成文件[shiyan@matrix 201203110210]$ lsarm-linux-gcc-3.4.4-glib-2.3.5-static.tar.gz hello.c已经生成③打开hello.c[shiyan@localhost ~]$ ./hello.c-bash:/hello cannot execute binary file表示无法在服务器上执行④交叉编译hello.c[shiyan@localhost ~]$ arm-linux-gcc -o hello hello.c⑤将文件拷贝到nfs下[shiyan@localhost ~]$ cp hello /home/shiyan/nfs⑥挂载服务器到板子上/ $ mount –tnfs -o nolock 192.168.1.116:/home/shiyan/nfs/mnt/nfs/ $cdmnt/nfs⑦打开hello文件/ $./hello结果输出:Jin 123四.实验总结上述实验可以得出,交叉编译的二进制可以在板子上运行,却不能在服务器上运行,很好的认清了交叉编译的意义和功能。
实验六Armboot下载运行及tcp实验一.实验目的1.掌握armboot的编译2.掌握tftp工具的使用3.掌握armboot下载运行4.掌握windows的tcp客户端的建立及通信过程5.掌握tcp的基本原理二.实验设备1.Arm9试验箱2.Pc机3.Linux系统服务器三.实验过程及实验结果1)Armboot①编译armboot-1.1.0cd /home/shiyan/arm-linux-2.6/armboot-1.1.0[shiyan@matrix armboot-1.1.0]$ make②产生的armboot.bin拷贝到tftp的目录服务下[shiyan@matrixarmboot-1.1.0]$cparmboot.bin /home/shiyan/arm-linux-2.6/armboot-1.1.0/tftpboot/armboot③打开arm9开发板,在五秒内按ESC,检查网络环境CPE>printenvbootdelay=3baudrate=38400ethaddr=00:40:25:00:00:01netmask=255.255.255.0sererip=192.168.1.65ipaddr=192.168.1.111serverip=192.168.1.30Environment size: 139/131068 bytes④将armboot的网络环境改为tftp服务的网络地址setenv serverip 192.168.1.220CPE>saveenvUn-Protected 1 sectorsErasing sector 6 ... ok.0x800e0000 o Flash...done.Protected 1 sectors⑤将armboot.bin文件通过tftp传输到内存0x2000000H中CPE>tftp 0x2000000 armboot.binARP broadcast 1ARP broadcast 2⑥运行go 0x2000000⑦检查网络环境CPE> printenvbootdelay=3baudrate=38400ethaddr=00:40:25:00:00:01netmask=255.255.255.0sererip=192.168.1.65ipaddr=192.168.1.111serverip=192.168.1.220通过serverip的改变可看出armboot下载的正确性。
实验七Mount挂载实验一.实验目的1.掌握一些基本的linux读写操作(touch指令)2.掌握Usb挂载方法3.掌握配置nfs的方法二.实验设备1.Arm9试验箱2.Pc机3.Linux系统服务器4.U盘三.实验过程及实验结果A.文件夹挂载1.服务器[shiyan@matrix ~]$/etc/rc.d/init.d/nfs start2.板子挂载/ $ ifconfig eth0 192.168.1.98/ $ mount -t nfs -o nol ock 192.168.1.220:/home/shiyan/nfs/mnt/nfs/$ dfFilesystem 1k-bl ocks Used Availabl e Use% Mounted on/d ev/mtdbl ock1 1024 544 480 53% /mnt/mtd192.168.1.220:/home/shiyan/nfs 515455456 59590720 429681056 12% /mnt/nfsb 挂载①将u盘插入arm9开发板,并启动②查看盘符信息/ $ fdisk -l③创建一个/mnt/usb文件夹/ $ mkdir /mnt/usb④把sda1盘符mount到/mnt/usb文件上/ $ mount /dev/sda1 /mnt/usb// $ cd /mnt/usb/mnt/usb $ ls⑤创建文件,并输入字符串/mnt/usb $ vi jin.txthello!⑥解挂载/mnt/usb $ unmount /mnt/usb//bin/sh: unmount: not found⑦将u盘拔出,插入电脑,观察该文件结果正确实验八RTC时钟驱动实验一.实验目的1.了解RTC工作原理2.掌握RTC时钟驱动编程二.实验内容1.编写RTC驱动程序2.通过insmod加载驱动程序3.编写代码修改RTC内部时间三.实验设备1.PC机2.Arm9实验箱客户端3.Linux操作系统服务端四.实验过程及结果1.实验代码#include <linux/module.h>#include <linux/fs.h>#include <linux/miscdevice.h>#include <linux/string.h>#include <linux/init.h>#include <linux/poll.h>#include <linux/proc_fs.h>#include <linux/ioport.h>#include <asm/bitops.h>#include <asm/hardware.h>#include <asm/irq.h>#include <asm/io.h>#include <linux/rtc.h>#include <linux/delay.h>#include <linux/i2c.h>#include <linux/bcd.h>#define DRIVER_VERSION "0.01"/* Register map *//* rtc section */// control and status registers#define REG_CS1 0x00#define TEST1 (1<<7) // 0-normal mode, must be set to logic 0 during normal operations; 1-EXT_CLK test mode#define STOP (1<<5) // 0-RTC source clock runs; 1-the RTC clock is stopped (CLKOUT at 32.768KHz is still available)#define TESTC (1<<3) // 0-power-on reset (POR) override facility is disable; set to logic 0 for normal operation; 1-POR override may be enable#define REG_CS2 0x01#define TI_TP (1<<4) // 0-\int is active when TF is active (subject to the status of TIE)#define AF (1<<3)#define TF (1<<2)#define AIE (1<<1)#define TIE (1<<0)// Time and date registers#define REG_SC 0x02 // vl_seconds (0-59)#define REG_MN 0x03 // minutes (0-59)#define REG_HR 0x04 // hours (0-23)#define REG_DT 0x05 // days (1-31)#define REG_DW 0x06 // weekdays (0-6)#define REG_MO 0x07 // century_months (1-12)#define REG_YR 0x08 // years (0-99)// Alarm registers#define REG_MA 0x09 // minute_alarm#define AE_M (1<<7)#define REG_HA 0x0a // hour_alarm#define AE_H (1<<7)#define REG_DA 0x0b // day_alarm#define AE_D (1<<7)#define REG_WA 0x0c // weekday_alarm#define AE_W (1<<7)// CLKOUT control register#define REG_CC 0x0d#define FE (1<<7)// Timer registers#define REG_TC 0x0e // timer_control#define TE (1<<7)#define REG_TMR 0x0f // timer#define RTC_SECTION_LEN 7/* i2c configuration */#define I2C_ADDR 0xa2/////////////////////////////////////////////////////////////#define DEFAULT_I2C_CLOCKDIV 180//for APB 108MHz staticunsignedlong rtc_status;staticvolatileunsignedlong rtc_irq_data;staticunsignedlong rtc_freq = 1; /*FTRTC010 supports only 1Hz clock*/ staticstruct fasync_struct *rtc_async_queue;static DECLARE_WAIT_QUEUE_HEAD(rtc_wait);extern spinlock_t rtc_lock;MODULE_AUTHOR("GM Corp.");MODULE_LICENSE("GM License");externint GM_i2c_xfer(struct i2c_msg *msgs, int num, int clockdiv);/* block read */staticint i2c_read_regs(u8 reg, u8 buf[], unsigned len){struct i2c_msg msgs[1];//////////////buf[0] = reg;msgs[0].addr = I2C_ADDR>>1;msgs[0].flags = 0;msgs[0].len = 1;msgs[0].buf = buf;if (GM_i2c_xfer(msgs, 1, DEFAULT_I2C_CLOCKDIV) != 1)return -1;//////////////msgs[0].addr = I2C_ADDR>>1;msgs[0].flags = 1;msgs[0].len = len+1;msgs[0].buf = buf;if (GM_i2c_xfer(msgs, 1, DEFAULT_I2C_CLOCKDIV) != 1)return -1;return 0;}/* block write */staticint i2c_set_regs(u8 reg, u8 const buf[], unsigned len){u8 i2c_buf[10];struct i2c_msg msgs[1];i2c_buf[0] = reg;memcpy(&i2c_buf[1], &buf[0], len);msgs[0].addr = I2C_ADDR>>1;msgs[0].flags = 0;msgs[0].len = len+1;msgs[0].buf = i2c_buf;if (GM_i2c_xfer(msgs, 1, DEFAULT_I2C_CLOCKDIV) != 1)return -1;return 0;}staticint set_time(struct rtc_time const *tm){int sr;u8 regs[RTC_SECTION_LEN] = { 0, };printk("stop RTC\n");regs[0] = STOP;regs[1] = 0x00; // disable interrupt and clear all flagssr = i2c_set_regs(REG_CS1, regs, 2);if (sr < 0) { // write control and status registersprintk("%s: stop RTC failed\n", __func__);return sr;}printk("set_time Date(y/m/d):%d/%d/%dTime(h/m/s):%d/%d/%d\n",tm->tm_year,tm->tm_mon,tm->tm_mday,tm->tm_hour,tm->tm_mi n,tm->tm_sec);regs[REG_SC-REG_SC] = BIN2BCD(tm->tm_sec);regs[REG_MN-REG_SC] = BIN2BCD(tm->tm_min);regs[REG_HR-REG_SC] = BIN2BCD(tm->tm_hour);regs[REG_DT-REG_SC] = BIN2BCD(tm->tm_mday);regs[REG_MO-REG_SC] = BIN2BCD(tm->tm_mon);regs[REG_YR-REG_SC] = BIN2BCD(tm->tm_year-100);regs[REG_DW-REG_SC] = BIN2BCD(tm->tm_wday & 7);/* write RTC registers */sr = i2c_set_regs(REG_SC, regs, RTC_SECTION_LEN);if (sr < 0) {printk("%s: writing RTC section failed\n", __func__);return sr;}printk("start RTC\n");regs[0] = 0x00;sr = i2c_set_regs(REG_CS1, regs, 1);if (sr < 0) { // write control and status registersprintk("%s: start RTC failed\n", __func__);return sr;}return 0;}staticvoid read_time (struct rtc_time *tm){int sr;u8 regs[RTC_SECTION_LEN] = { 0, };sr = i2c_read_regs(REG_SC, regs, RTC_SECTION_LEN);if (sr < 0) {printk("%s: reading RTC section failed\n", __func__);return;}tm->tm_sec = BCD2BIN(regs[REG_SC-REG_SC]&0x7f);tm->tm_min = BCD2BIN(regs[REG_MN-REG_SC]&0x7f);tm->tm_hour = BCD2BIN(regs[REG_HR-REG_SC]&0x3f);tm->tm_mday = BCD2BIN(regs[REG_DT-REG_SC]&0x3f);tm->tm_wday = BCD2BIN(regs[REG_DW-REG_SC]&0x07);tm->tm_mon = BCD2BIN(regs[REG_MO-REG_SC]&0x1f); /* rtc starts at 1 */tm->tm_year = BCD2BIN(regs[REG_YR-REG_SC])+100;printk("read_time Date(YY/MM/DD):%d/%d/%dTime(hh/mm/ss):%d/%d/%d\n",tm->tm_year,tm->tm_mon,tm->tm_mday,tm->tm_hour,tm->tm _min,tm->tm_sec);}staticunsigned AIE_stat=0;/*ijsung: arch-indep function*/staticint rtc_open(struct inode *inode, struct file *file){if (test_and_set_bit (1, &rtc_status))return -EBUSY;rtc_irq_data = 0;return 0;}staticint rtc_release(struct inode *inode, struct file *file){unsignedchar buf[7];rtc_status = 0;return 0;}staticint rtc_fasync (int fd, struct file *filp, int on){return fasync_helper (fd, filp, on, &rtc_async_queue);}staticunsignedint rtc_poll(struct file *file, poll_table *wait){poll_wait (file, &rtc_wait, wait);return (rtc_irq_data) ? 0 : POLLIN | POLLRDNORM;}static loff_t rtc_llseek(struct file *file, loff_t offset, int origin){return -ESPIPE;}ssize_t rtc_read(struct file *file, char *buf, size_t count, loff_t *ppos) {DECLARE_WAITQUEUE(wait, current);unsignedlong data;ssize_t retval;if (count <sizeof(unsignedlong))return -EINVAL;add_wait_queue(&rtc_wait, &wait);set_current_state(TASK_INTERRUPTIBLE);for (;;) {spin_lock_irq (&rtc_lock);data = rtc_irq_data;if (data != 0) {rtc_irq_data = 0;break;}spin_unlock_irq (&rtc_lock);if (file->f_flags & O_NONBLOCK) {retval = -EAGAIN;goto out;}if (signal_pending(current)) {retval = -ERESTARTSYS;goto out;}schedule();}spin_unlock_irq (&rtc_lock);data -= 0x100; /* the first IRQ wasn't actually missed */ retval = put_user(data, (unsignedlong *)buf);if (!retval)retval = sizeof(unsignedlong);out:set_current_state(TASK_RUNNING);remove_wait_queue(&rtc_wait, &wait);return retval;}staticint rtc_ioctl(struct inode *inode, struct file *file, unsignedint cmd, unsignedlong arg){struct rtc_time tm, tm2;unsignedchar buf[7];switch (cmd) {case RTC_AIE_OFF:printk("Not Support\n");return 0;case RTC_AIE_ON:printk("Not Support\n");return 0;case RTC_ALM_READ:printk("Not Support\n");return 0;case RTC_ALM_SET:printk("Not Support\n");return 0;case RTC_RD_TIME:read_time(&tm);break;case RTC_SET_TIME:{unsigned usertime;unsignedchar buf[7];if (!capable(CAP_SYS_TIME))return -EACCES;if (copy_from_user (&tm, (struct rtc_time*)arg, sizeof (tm)))return -EFAULT;set_time(&tm);}return 0;case RTC_IRQP_READ:return put_user(rtc_freq, (unsignedlong *)arg);case RTC_IRQP_SET:if (arg != 1) return -EINVAL;return 0;case RTC_EPOCH_READ:return put_user (1970, (unsignedlong *)arg);default:return -EINVAL;}return copy_to_user ((void *)arg, &tm, sizeof (tm)) ? -EFAULT : 0;}staticstruct file_operations rtc_fops = {owner: THIS_MODULE,llseek: rtc_llseek,read: rtc_read,poll: rtc_poll,ioctl: rtc_ioctl,open: rtc_open,release: rtc_release,fasync: rtc_fasync,};staticstruct miscdevice ftrtc010rtc_miscdev = {RTC_MINOR,"rtc",&rtc_fops};staticint rtc_read_proc(char *page, char **start, off_t off, int count, int *eof, void *data) {// unsigned alarm_time;unsignedchar buf[7];char *p = page;int len;struct rtc_time tm;read_time(&tm);//printk("RTC ... %d\n",_sec);p += sprintf(p, "rtc_time\t: %02d:%02d:%02d\n""rtc_date\t: %04d-%02d-%02d\n""rtc_epoch\t: %04d\n",tm.tm_hour + 1, tm.tm_min, tm.tm_sec,tm.tm_year + 1900, tm.tm_mon + 1, tm.tm_mday, 2000);// read_alarm(&tm);// p += sprintf(p, "alrm_time\t: %2dth day of week day\n"// "alrm_date\t: N/A for Platform\n",// tm.tm_wday);p += sprintf(p, "alrm_time\t: Not Support\n""alrm_date\t: Not Support\n");p += sprintf(p, "alarm_IRQ\t: %s\n", AIE_stat ? "yes" : "no" );len = (p - page) - off;if (len < 0)len = 0;*eof = (len <= count) ? 1 : 0;*start = page + off;return len;}staticint __init rtc_init(void){misc_register (&ftrtc010rtc_miscdev);create_proc_read_entry ("driver/rtc", 0, 0, rtc_read_proc, NULL); printk("PCF8563 Real Time Clock driver\n");return 0;}staticvoid __exit rtc_exit(void){remove_proc_entry ("driver/rtc", NULL);misc_deregister (&ftrtc010rtc_miscdev);}module_init(rtc_init);module_exit(rtc_exit);2.挂载usb/ $ ifconfig eth0 192.168.1.99/ $ mount -t nfs -o nolock 192.168.1.220:/home/shiyan/nfs /mnt/nfs / $ fdisk –l/ $ mkdir /mnt/usb/ $ mount /dev/sda1 /mnt/usb// $ cd /mnt/usb3.找到u盘中的pcf8563.ko/mnt/usb $ ls4.加载pcf8563.ko/mnt/usb $ insmod pcf8563.ko5.更改日期并写入6.重启检验日期与当前时间相符实验九视频采集RTP发送及远程视频监控实验一.实验目的1. 理解视频传输原理2. 掌握在IP网络中实现视频传输的方法3.理解远程控制原理4.掌握在windows下TCP客户端建立及通信过程二.实验内容1.搭建点对点视频传输模式2.开启视频采集3.开启Windows下tcp客户端,完成控制命令三.实验设备1.硬件:基于双核处理器架构的网络音视频传输教学实验系统;对接线;串口连接线;网线;集线器(HUB),PC机;2.软件:H.264流媒体软件设备端视频采集程序设备端视频传输程序串口操作软件四.实验步骤及结果A.视频采集1.连接好实验箱,打开串口通信端,远程mount到home/nfs文件夹/ $ mount -t nfs -o nolock 192.168.1.116:/home/shiyan/nfs /mnt/nfs2.挂载服务器下nfs与板子的/mnt/nfs,进入/mnt/nfs文件夹/ $ cd /mnt/nfs3.输入ls命令,目录下文件/mnt/nfs $ ls123321 clientxxww readme tcpserver StartLog0 ffgpio.ko server tcpserver19a gpio_test serverfxf tcpserver_arm_11 bo hello serverxw tcpserver_hdt client nfs1 tcpclient tcpserver_zn client_arm ok tcpclient19 tcpseverclient_arm_17 program_20_1.c tcpclient_29 tw2835_menu client_arm_st20 program_20_2.c tcpclient_arm_11 xianshiclient_dalan programyk tcpclient_hdt ykclientxw programyq tcpclient_zn yq4.运行tw2835_menu进行视频采集/mnt/nfs $ ./tw2835_menu&5.进入挂载目录并查看文件/mnt/nfs $ cd nfs1/mnt/nfs/nfs1 $ lsdev_app.app hello vedio.confTCPS1dev_app3 ffgpio.ko tw2835_menudev_app gpio_test tw2835_pic6.运行dev_app到板子IP192.168.1.9/mnt/nfs/nfs1 $ ./dev_app 192.168.1.97.开启H.264流媒体播放器进行视频接受a)用解码器解码,并允许注册.batb)打开H.264流媒体播放器,点击开启视频接收B.远程视频监控1.重复以上实验1~4步2.进入已挂载目录/mnt/nfs/nfs1,看到多个程序/mnt/nfs $ cd nfs1/mnt/nfs/nfs1 $ lsStartLog0 dev_app.app hello vedio.conf TCPS1 dev_app3 wwwboot.sh ffgpio.ko tw2835_menu3.运行TCPS1/mnt/nfs/nfs1 $ ./ TCPS14.程序进入等待状态,等待TCP连接到来5.开启H.264流媒体播放器,点击“开始视频接收”,屏幕变黑6.点击“控制功能”,输入设备端ip地址192.168.1.68,点击连接7.设备端出现下列字样,表示连接成功Servergetconnectionfrom192.168.1.688.点击“开启视频监控”,获得视频数据实验十一Tcp网络编程一、实验目的1.了解网络编程原理2.了解套接字的使用二、实验原理嵌入式Linux的网络通信程序是基于套接字模式的。