当前位置:文档之家› 锂亚硫酰氯电池热控制研究方案现状

锂亚硫酰氯电池热控制研究方案现状

锂亚硫酰氯电池热控制研究现状收藏此信息推荐给好友2009-6-23 来源:机电商情网1 引言锂是金属中最轻和电势最负的一种元素,锂亚硫酰氯(Li/SOCl2)电池是一种以锂为负极,碳作正极,无水四氯铝酸锂的亚硫酰氯(SOCl2)溶液作电解液的锂电池。

Li/SOCl2电池具有比能量高、比功率大、放电电压平稳、储存寿命长等特性,在航天器、水中兵器、导航设备等军事和民用工业中都有广泛的应用。

不同电池的比能量与比功率关系如图1所示[1] [2]。

从图中可以看出,Li/SOCl2电池是比能量和比功率最高的电池。

大型Li/SOCl2电池主要用于不依靠工业电源的军事用途,作为一种无须充电的备用电源,如导弹深井发射时的地面备用电源等,一次锂电池在军事装备中的特殊功能,是其他电池无法替代的[3][4]。

Li/SOCl2电池存在的主要问题是电压滞后与安全问题,其中安全问题是最主要的问题。

锂电池在使用过程中发生化学反应,产生热量不能及时有效地散发,就会在电池部积累热量,引起电池的升温,进一步促使反应的加剧,形成产热与温升的正反馈,当热量积累到一定程度的时候,就有鼓胀、泄漏、着火、爆炸等危险,这种现象被称之为热失控。

因此,分析电池的热特性,并有针对性地使用热控措施,迅速导出电池放出的热量,减少电池部热量积累,防止热失控,保证电池的安全,具有十分重要的意义。

2 Li/SOCl2电池发热机理研究有关Li/SOCl2电池的发热机理的研究主要侧重于深入了解电池部化学机理,建立电池热模型,目的是减少电池放电发热量和热流密度。

分别从传热学、电学和化学角度分析,电池热模型有三种不同的形式。

从传热学角度分析,假设单体电池温度部均匀,应用傅立叶导热定律,可以得出电池热平衡控制方程为[5](1)上式中:为电池密度(kg/m3),cp为定压比热容(J/(kg﹒K)-1),T为电池温度(K),t为时间(s),为导热系数(W/(m﹒K)-1),为单位体积热生成率(W/m3)。

从电学角度分析,电池发热功率由下式确定[6](2)式中:QT为发热功率(W),I为放电电流(A),Er为开路电压(V),E1为负载电压(V),其中IE1为电池可用功率(W),从工程应用的角度分析,电池热控制的主要目的是减少发热功率,而并非减少可用功率。

从化学角度分析,电池发热功率由下式确定[7]:(3)式中:QP为极化热(W),来源于正负极的极化和电解液阻值升高,是电池优化设计能够降低的主要热量;QS是由熵变引起的热量(W),电池电极的熵变对电池的电化学和热行为有显著影响,Gu W. B. 建立了热和电化学耦合的模型,对热—电化学交互作用进行了分析,认为在热滥用的情况下,电池温度逐渐升高,电池正极发生热分解,最终导致热失控[8];QA为化学反应热(W),主要源于金属锂的腐蚀,还包括电池化学副反应。

Li/SOCl2电池反应方程式见式(4),此反应是放热反应,除此反应外,Li/SOCl2电池部其他反应也是剧烈的放热反应。

(4)由于Li/SOCl2电池寿命可长达10年,电池的自放电反应对电池性能影响很大,所以研究长时间储备后进行放电的Li/SOCl2电池时,QA需要考虑自放电产热。

Spotnitz R.M.等建立了Li/SOCl2电池自放电特性的电化学模型,用于预测电池寿命,提高安全系数[9]。

电池的发热是与电化学联系在一起的。

Gomadam P. M.建立的锂电池的一维热模型与电化学相关,用于优化螺旋卷绕的锂电池[10]。

Surampudi S.等在JPL(美国喷气推进实验室)的报告中分析了Li/SOCl2电池的安全因素,认为热机制和化学机制的共同作用使电池发生泄漏或爆炸[2]。

通过以上分析可以发现,三种热模型并不是孤立的,建立电池热模型要综合分析电池热—电—化学的综合作用。

3 电池热物理参数测量测量电池的热物理参数对电池的热性能分析是十分必要的。

将准确的热物理参数用于电池热物理模型,进行数值模拟,可以预测电池热特性,设计和优化电池结构设计和热控制方式。

电池热物理参数包括电池产热量、热容量、导热系数和温度分布等。

对电池热性能进行分析测试的方法有差示扫描量热法、加速量热法、红外热成像等,通过多种分析测试方法可以研究电池的热行为,从而揭示电池安全性的本质。

Pesaran A.A.等介绍了一种用于测量高功率电池模块的CSC4400型量热计,该量热计可用于测量最大体积为21cm×39cm×20cm的电池的发热功率,测量围1W~100W,电池工作温度-30℃~60℃[11]。

Takeuchi E. S.等通过351RA型Tronac微量热计和长时间放电方法估算了低倍率放电Li/BCX电池的发热量和容量损失,用于估计电池寿命[12]。

Kalu E.E.等通过测量可逆电动势及开路电压随时间变化率,预测电池发热量,测量了Li/BCX和Li/SOCl2电池的基本热力学参数[13]。

Pes aran A.A.等对电动车辆和混合电动车辆使用的多种电池的热性能进行了研究,用量热计得出了电池的产热量、比热容,使用红外热成像设备得到电池温度分布,认为电池热生成率取决于电池初始充电容量、初始温度和放电方式,电池部温度均匀性取决于结构设计[14]。

图1 不同电池的比能量与比功率关系[1][2]测量电池导热系数的基本原理是傅立叶导热定律。

由于结构设计及材料在不同方向的导热系数不同,电池的导热系数是各向异性的。

Cosley M.R. 等测量了棱柱形VRLA电池三个方向的导热系数,三个方向导热系数不同主要是由于电池部铅材料的结构布置[15]。

She ldon R.C.应用Tecam TU-15 Tempunit微量热计采集的数据,建立了锂电池系统的模型,研究发现平行于电池电极的方向导热系数较大,而垂直于电极的方向导热系数很小[16]。

综上所述,电池热物理参数测量方法很多,通过测量电池热物理参数可以发现,电池结构设计与材料选择对热物理参数影响很大,而热物理参数直接关系到电池热特性,影响到电池热控制方式的选择和效果。

4 电池热控制方式有关电池的热控制措施可以分为两方面,一方面是着眼于电池部,优化电池设计,研制适当的材料和结构,从根源上减少电池发热量。

另一方面着眼于电池外部,优化电池和电池组结构,增大换热面积和传热系数,从而增加电池散热,同时使用电池热管理系统对电池进行监控和热控制,保证电池的安全[17]。

4.1 电池部热控制电池部热控制可以从传热学、电学和化学角度分析。

从传热学角度分析,主要方法是优化结构,增大电池部导热系数,减小接触热阻。

具体措施有:采用低压排气阀,当电池部压力过高时,排气阀打开放气,起到保证电池安全的作用。

圆柱形电池采用空芯设计使得电池中热量均匀扩散,减少热量沿半径方向的梯度变化,提高散热效果和耐热能力。

控制电池部极板装配松紧度,尽量减小极板间的空隙,提高导热性能,避免电池部的热量积累[17][18]。

从电学角度分析,主要是防止过放电。

具体措施有:改进集流体结构;卷绕电极的末端有多余的锂,正常放电时不会氧化,而在电池过放电时可以形成分流,防止过放电引起的安全问题;碳正极的容量冗余设计等。

从化学角度分析,主要是要降低电池部欧姆极化热。

具体措施有:增大极板正对面积和减小极板厚度,降低欧姆阻;采用过量电解液用于传热和减少电池极化[7][17][19]。

4.2 电池外部热控制从电池外部结构考虑,热控制方式可分为被动热控、热电制冷、热开关、对流式主动热控、相变热控等。

不同热控方式定性比较如表1所示,表1为热控方式的选择提供了依据。

热控制方式的选择除考虑表中所示各项指标外,还要考虑电池结构型式是层状、棱柱还是卷绕结构,不同结构导致电池部温度梯度不同,层状电池换热面积较大,温度梯度较小,卷绕电池和棱柱电池温度梯度较大[1]。

表1 不同热控方式定性比较[15]4.2.1 电池被动热控制被动热控方式主要从改善电路及电池外部结构方面考虑。

改善电路结构方面,是系统级对电路进行监控,防止电池过热。

具体措施可以用热敏电阻监控电池电流、电压和温度,保证电池在指定温度工作,电池组加熔断丝、聚合物PTC 自复保险丝等,改善排热和冷却性能。

为防止电池反充及过放电,可在电子线路中加入肖特基二极管等[20][21]。

在电极端子上连接一个金属导电片,使短路电流均匀分布于整个极片上,降低局部高热的可能性,可以有效增强电池的安全性[17]。

改进电池和电池组结构的具体措施有:将电池壳外部做出突起部分,组合时各单体电池突起互相接触,凹槽构成制冷剂流动的空间,由制冷剂对电池进行冷却,如图2所示[22]。

美军Titan Ⅳ运载火箭应用的250Ah Li/SOCl2电池使用整体铝制箱体,用一个热控封套盖在单体电池上来抵消单体电池部压力,保护单体电池爆破薄膜,增加电池外表面的辐射面积,如图3所示[23]。

可以用放置在电池层之间的热控平板保证电池组温度均匀性[24],C osley M.R.等开发了分离的冷却系统,通过冷板和热控封套的直接冷却使电池降温,并用F lothemTM 进行了数值模拟,结果表明热控封套对降低电池温度梯度有显著作用[15] 。

4.2.2 热电制冷热电制冷使用帕尔贴效应,在含有P-N结电偶对的闭合回路以直流电,在两端结点产生吸热和放热现象,其特点是结构紧凑,无运动部件,工作效率较低,必须合理设计电偶对位置防止短路。

Parise R.J.在电池部使用热电制冷,增大了充电过程中的散热,可以提高充电速度,热电制冷不仅仅可以用于电池部,也可用于单体电池之间[25]。

图2文献[22]电池组设计图3 文献[23]电池设计4.2.3 热开关。

相关主题