“高分一号”多光谱遥感数据特征评价分析孙明1,钟仕全1,孙涵1,谢敏2,吴朝晖1(1 广西区气象减灾研究所/国家气象卫星中心遥感应用试验基地/气象GIS应用联合实验室,南宁530022;2 广西区气候中心,南宁 530022)摘 要:本文主要利用多种数据质量指标对高分一号WFV4传感器的多光谱图像数据进行了评价,并将其和美国最新发射的Landsat-8 OLI数据进行对比分析,结果表明:GF-1卫星在灰度值分布、影像所含信息量等方面与Landsat-8卫星有一定差距,但在空间分辨率、近红外波段的独立性以及地物可分性方面则要强于Landsat-8,在国土资源调查、环境监测等方面具有很大的潜力。
关键词:高分一号;Landsat-8 OLI;地物光谱;遥感1 引言随着我国经济建设的快速发展,广大用户对高空间分辨率、高时间分辨率、高光谱分辨率和全天候的卫星遥感数据的需求十分迫切,面对复杂多样的自然灾害及环境问题,急需能够共享的、标准化的、能满足不同需求的不同类型的卫星遥感数据, 满足灾害和环境监测与预报的要求。
随着微电子、微机械等技术的迅猛发展,对地遥感技术取得了重大的突破性进展,作为对地遥感卫星家族的主要成员之一的高分辨率遥感卫星成为国内外用户的宠儿,尤其是在精细农业、化工、资源详查、水利、测绘、重大工程、新闻报道等领域的应用为世界各国带来了巨大的经济效益和难以估量的社会效益。
国家根据这一经济发展大需要,提出建设“天地一体化的对地观测体系”的发展思路,近年来接连发射成功了多颗高分辨率的资源卫星:主要包括资源一号02C星、资源三号卫星以及最新发射的高分一号卫星,这一系列卫星构成了我国高空间分辨率和高时间分辨率对地观测体系,改变了我国从国外大量购买卫星影像的被动局面,提升了高分辨率遥感卫星影像的自主供给能力和国际竞争力[1]。
其中,最新发射的“高分一号”卫星突破了高空间分辨率、多光谱与高时间分辨率结合的光学遥感技术,对于推动我国卫星工程水平的提升,提高我国高分辨率数据自给率,具有重大战略意义。
本文主要选用几项数据评价指标对高分一号卫星WFV4传感器的多光谱图像数据特征进行评价,并与美国最新发射的Landsat-8 OLI多光谱数据进行对比分析,为该数据的后期推广及应用提供参考。
2 数据选取及预处理本文所选取的实验数据为2014年1月04日GF-1卫星WFV4传感器的一景16m分辨率多光谱数据,覆盖范围包括南宁、来宾、柳州以及百色,影像基本晴空(如图1所示)。
为了对比分析,本文同时选取美国最新发射的Landsat-8卫星数据,成像时间为2013年12月04日(如图2所示),选择与GF-1卫星多光谱波段相对应的4个波段数据,并选取两种数据共同覆盖的区域作为实验样区。
386387图1 GF-1卫星的WFV4多光谱图像数据 图2 Landsat-8卫星 OLI 多光谱图像数据 Fig.1 Multispectral Image of GF-1 WFV4 sensor Fig.2 Multispectral Image of Landsat-8 OLI sensor2.1 GF-1卫星影像基本特征GF-1卫星是国家高分辨率对地观测系统重大专项天基系统中的首发星,其主要目的是突破高空间分辨率、多光谱与高时间分辨率结合的光学遥感技术,多载荷图像拼接融合技术,高精度高稳定姿态控制技术,5-8年寿命高可靠低轨卫星技术,高分辨率数据处理与应用等关键技术,推动我国卫星工程水平的提升,提高我国高分辨率数据自给率。
卫星于2013年4月26日发射入轨。
GF-1卫星搭载了两台2m 分辨率全色/8m 分辨率多光谱相机,四台16m 分辨率多光谱相机以及配套的高速数传系统,设计寿命5-8年,具备每天8轨成像、侧摆35度成像能力,最长成像时间12分钟,可广泛应用于国土资源调查与监测、防灾减灾、农业水利以及生态环境监测等国家重大工程领域[2]。
GF-1卫星轨道参数及有效载荷技术指标如表1和表2[3]所示,表3[4]列出了GF-1卫星WFV4传感器四个波段与Landsat-8卫星OLI 传感器对应的四个波段信息对比数据。
表1 GF-1卫星轨道和姿态控制参数Table 1 Control parameters of orbit and attitude of GF-1参 数 指 标 轨道类型 太阳同步回归轨道 轨道高度 645km(标称值) 倾角 98.0506° 降交点地方时 10:30 AM侧摆能力(滚动)±25°,机动25°的时间≦200s,具有应急侧摆(滚动)±35°的能力表2 高分一号卫星有效载荷技术指标Table 2 Technical index of payload of the GF-1 satellite参 数2m 分辨率全色/8m 分辨率多光谱相机16m 分辨率多光谱相机全色0.45-0.90μm 0.45-0.52μm 0.45-0.52μm0.52-0.59μm 0.52-0.59μm 0.63-0.69μm 0.63-0.69μm 光谱范围多光谱0.77-0.89μm 0.77-0.89μm空间分辨率 全色 2m 16m多光谱8m幅宽 60km(2台相机组合) 800km(4台相机组合)重访周期(侧摆时)4天覆盖周期(不侧摆) 41天4天表3 GF-1 WFV4传感器与Landsat-8 OLI传感器参数对比Table 3 Comparison between parameters of GF-1 WFV4 sensor and Landsat-8 OLI sensor卫星型号 波段列表 波段范围/μm 像元分辨率/m幅宽/kmBand1 0.45-0.52Band2 0.52-0.5916 800GF-1Band3 0.63-0.69Band4 0.77-0.89Band2 0.45-0.51Band3 0.53-0.59Landsat-830 185Band4 0.64-0.67Band5 0.85-0.882.2 数据预处理为了分析和比较卫星影像地物的光谱反射信息,需将GF-1影像与Landsat-8影像进行辐射校正处理。
表4列出了GF-1卫星WFV4传感器的辐射定标系数,利用ENVI软件和公式(1)对GF-1卫星WFV4传感器数据进行辐射校正。
λ=⋅+ 公式(1)L Gain DN Bias()εε式中:Gain为定标斜率;DN 为卫星载荷观测值; Bias为定标截距。
表4 GF-1 WFV4传感器的定标系数Table 4 Calibration coefficients of WFV4 sensor卫星载荷 波段号 Gain BiasBand1 0.1819 3.6469Band2 0.1762 -13.54WFV4Band3 0.1463 -10.998Band4 0.1522 -12.142ENVI 5.0 SP3软件的辐射校正模块中新增了对Landsat 8卫星OLI传感器的支持,通过ENVI软件中的Radiometric Calibration功能完成对Landsat 8卫星OLI多光谱数据的辐射校正。
3 数据质量评价利用ENVI 5.0 SP3软件对两种卫星数据的不同波段进行灰度值统计,计算每个波段的最小值、最大值、平均值和方差(如表5),并对每个波段的灰度值分布范围统计,得出每个传感器不同波段的灰度值分布直方图(图2和图3);同时,计算不同波段间的相关系数,388389并选取典型地物分析光谱反射特征差异。
3.1 波段统计特征量及直方图比较从表5可以看出,GF-1卫星WFV4传感器的多光谱数据每个波段的最小值、最大值、平均值以及标准差均比Landsat-8多光谱数据小:GF-1卫星WFV4数据各波段最大值均小于1000,而Landsat-8 OLI 多光谱数据第五波段最大值超过20000,说明Landsat-8 OLI 数据的灰度值分布范围要远远优于GF-1 WFV4数据;GF-1 WFV4数据每个波段的灰度均值小于Landsat-8 OLI,说明其多光谱数据各个波段图像中的地物平均反射强度要远远小于Landsat-8 OLI 数据,灰度值集中在较低的范围,从而导致其影响的明亮度整体低于Landsat-8 OLI 数据;方差较小则说明GF-1 WFV4数据每个波段所含信息量相对Landsat-8 OLI 数据要小。
从图3我们可以看出:GF-1 WFV4传感器的波段1、波段2和波段3的主要灰度值分布范围相差不大,均小于波段4的灰度值分布范围;从图4看出,Landsat-8 OLI 传感器的波段直方图分布和GF-1 WFV4趋势相同,波段2、波段3和波段4的灰度值分布范围较小,而波段5的灰度值范围远远大于前面三个波段。
表明两种卫星的四个波段中,GF-1的第四波段和Landsat-8的第五波段地物细节更丰富。
比较图3和图4的横坐标,我们可以看出GF-1 WFV4各个波段灰度值主要集中在较小的数值范围,远远小于Landsat-8 OLI 数据,这种差别反映到图像上则表现出Landsat-8地物层次细节较为丰富,纹理更清晰,色彩明亮,和GF-1相比,Landsat-8多光谱数据所含信息量要更大。
表5 GF-1 WFV4数据和Landsat-8 OLI 数据基本统计特征量对比Table 5 Comparison between characteristic values of GF-1 WFV4 data and Landsat-8 OLI data卫星 波段 最小值 最大值 平均值 标准差 Band1 235 841 366.6519 31.11952 Band2 167 916 324.3392 38.10797 Band3 111 935 269.9108 48.20425 GF-1 WFV4传感器Band4103 777 328.2756 48.06406 Band2 7781 15419 9251.806 438.3825 Band3 6687 16651 8549.327 572.4319 Band4 6044 17813 8024.787 819.2846 Landsat-8 OLI 传感器Band561772385012961.981930.038图3 GF-1 WFV4传感器多光谱波段直方图 Fig.3 Histograms of multispectral band of GF-1 WFV4390图4 Landsat-8 OLI 传感器多光谱波段直方图 Fig.4 Histograms of multispectral band of Landsat-8 OLI3.2 波段间相关性分析在大量的遥感图像数据处理中发现,遥感图像的波段之间具有较强的线性相关性,尤其相邻波段的线性相关性非常强。