第42卷第1期2016年1月北京工业大学学报JOURNAL OF BEIJING UNIVERSITY OF TECHNOLOGYVol.42No.1Jan.2016污水中药物和个人护理用品的光降解马 颖1,胡安明1,2(1.北京工业大学激光工程研究院,北京 100124;2.美国田纳西大学机械㊁航空㊁生物工程系,诺克斯维尔TN37996)摘 要:药品和个人护理用品(pharmaceuticals and personal care products,PPCPs)作为新兴的环境污染物逐渐引起了广泛关注,不仅因为其在地表水中难以检测,更因为即便是极低的含量,也会对与其接触的生物产生生理毒性效应.尽管其在环境中的质量浓度仅有μg /L 到ng /L,但对水生生物表现出一定的内分泌干扰,对人类健康有潜在的威胁.因此,低成本去除废水中的PPCPs 吸引了研究人员的关注.关于PPCPs 在污水中的迁移转化已有大量研究,从传统的污水处理到新型的处理过程,从实验室到实地监测.本文综述了多种光致氧化工艺去除PPCPs 的优缺点,包括光催化㊁直接光解㊁臭氧化㊁光电催化等.阐明PPCPs 的迁移转化及其影响并限制其对生态环境的污染,是保护未来生态环境和人类健康的关键.关键词:药品和个人护理用品去除;光降解;水处理中图分类号:V 261.8文献标志码:A文章编号:0254-0037(2016)01-0060-08doi :10.11936/bjutxb2015070104收稿日期:2015-07-28基金项目:北京市自然科学基金重点资助项目(KZ20141000500)作者简介:马 颖(1989 ),女,博士研究生,主要从事激光纳米制造㊁光催化方面的研究,E-mail:mycat123@Photonic Removal of Pharmaceuticals and Personal CareProducts From WastewaterMA Ying 1,HU Anming 1,2(1.Institute of Laser Engineering,Beijing University of Technology,Beijing 100124,China;2.Department of Mechanical,Aerospace and Biomedical Engineering,University of Tennessee,Knoxville TN37996,USA)Abstract :Pharmaceuticals and personal care products (PPCPs)have attracted much recent attention as widespread emerging environmental contaminants,both due to their near ubiquitous detection in surface waters adjacent urban areas,but also their potential to generate endocrine modulating responses at low concentrations in exposed organisms.Although usually being detected in environmental matrices only at μg /L or ng /L ranges,the adverse effects in exposed aquatic organisms have been widely reported and prompted concerns over the potential for human health effects.Consequently,there has been increasing research attention paid to cost-effectively removing PPCPs.Numerous studies have examined the occurrence and fate of PPCPs in wastewater and adjacent receiving environments,focusing on their removal by conventional and advanced treatment processes at varying scales ranging from the lab to bench experiments to full treatment plant manipulations.This review will discuss various photonic assisted advanced oxidization treatments such as photocatalytic degradation,photolysis,ozonation and photoelectrolysis with advantages and limitations of each treatment approach (or combinations thereof)in removing PPCPs.Elucidating the fate and effects of PPCPs in the environment,and the potential of recent technologies to limit their environmental contamination,are the key elements in protecting future ecosystem and human health.Key words :pharmaceuticals and personal care products (PPCPs)removal;photocatalysis degradation;wastewater treatment第1期马 颖,等:污水中药物和个人护理用品的光降解 在过去的几十年中,随着医药和个人护理行业的发展,药品和个人护理用品(pharmaceuticals and personal care products,PPCPs)的大量使用导致其在土壤㊁水和大气中有大量残留.直到1999年Daughton 等[1]发表了第一篇关于PPCPs 的综述,人们才逐渐开始意识到这类化合物,不仅源自处方药和生物制剂㊁还有诊断制剂㊁营养保健品,芳香剂等,环境保护署将这类化合物定义为PPCPs.近年来,PPCPs 因其高极化和低挥发性被认为是水环境中的新兴污染物.随着分析技术的发展,这些化合物在极低质量浓度下都能被检测[2].PPCPs 被设计为在质量浓度检测极限下仍对人体或动物有一定的生理影响,因此它们对暴露其中的有机体有潜在的毒性,有些甚至可以导致长期且不可逆转的基因突变.由于PPCPs 在环境中的持续积累且不可降解,因此被认为是对人类和动物的潜在危害[3].因此,关于PPCPs 的迁移转化产生了一系列问题,其生理毒性和对人类健康的风险,以及目前饮用水和污水处理设施对这类化合物的去除仍悬而未决.基于该背景,本文主要综述了PPCPs 在水环境中的现状和不同新型光致污水处理工艺对PPCPs 的去除,特别是纳米材料光催化对PPCPs 的去除.1 水环境中PPCPs的存在现状图1 水环境中导致PPCPs 残留的可能来源与途径Fig.1 Scheme showing possible sources and pathways forthe occurrence of pharmaceutical residues in theaquatic environment1.1 水源中的PPCPs水环境中的PPCPs 在欧亚大陆很多国家都有研究,将PPCPs 排放到环境中的途径很多,主要是通过污水处理厂和畜牧业[4].水环境中导致PPCPs残留的可能来源和途径,如图1所示.世界范围内水源中PPCPs 的含量被检出从ng /L 到μg /L 不等.表1列举了不同水源中PPCPs 的含量现状.在不同水源中PPCPs 的质量浓度变化很大,甚至在同一条河流的上游和下游,PPCPs 的质量浓度都会有明显区别,这给水处理带来更大的挑战[5].表1 水源中PPCPs 的含量现状Table 1 Current situation of PPCPs in source water PPCP 化合物水源中的质量浓度/(μg ㊃L -1)参考文献Clofibric acid 3.2~26.7[6]Phenazon 0.06~0.155[7]Salicylic acid 1.601~89.133[7,8]Ibuprofen 0.002~34.0[9,10]Paracetamol 0.069~26.09[11,12]Acetaminophen 0.027~65.2[6]Caffeine0~38.0[6,7]Sulfamethoxazole 0.0017~2.17[7,13]Trimethoprim 0.002~0.18[7]Naproxen 0~135.2[6,14]Ciprofloxacin 0.017~0.036[16]Bisphenol A 0~147.2[6,15]Diclofenac0.003~5[7,10]Carbamazepine 0.014~0.5[7,12,16]Gemfibrozil 0.3~1.652[9]Estrone0.0006~4.7[6,17]17β-estradiol 0.0004~4.5[6,18]Triclosan 0.39~37.8[7,19]Nonylphenol 0.006~37[15,20]Octylphenol0.0008~0.7[15,20]1.2 饮用水中的PPCPs饮用水处理厂的作用是将未净化的水中的杂质去除使其达到饮用水标准.处理过程主要取决于未净化的水的特点.传统的处理工艺通常包括沉淀㊁过滤和消毒,有时也包括离子交换工艺[21].研究表明,尽管经过这些处理过程,PPCPs 仍没有完全去除[22].与污水处理厂相比,关于饮用水中PPCPs含量的报道很少,这可能是由于缺少系统的监控或者所采用的检测手段不够灵敏所导致的.但仍有至少25种PPCPs 在饮用水中被检出,检测结果表明β-blocker atenolol 是饮用水中被检测频率最高的药物,其次是水杨酸和卡马西平.表2所示为不同国家饮用水中PPCPs 的最高检出质量浓度和检出频率[23-25].目前污水处理厂和饮用水处理厂的作用都是去除废水或饮用水中的有机和无机悬浮物㊁絮状物和病菌,其处理过程通常包括沉淀㊁过滤(沙滤和膜16北京工业大学学报2016年滤)㊁活性炭吸附㊁生物降解等,处理工艺都未针对水中PPCPs的去除.由于高化学稳定性和低生物降解性,PPCPs很难通过传统水处理过程去除,如图2所示.因此在过去的十几年中,为满足水处理的需求,在水处理中增加高级氧化技术(advanceoxidation processes,AOPs).表2 饮用水中PPCPs的最高检出质量浓度和检出频率Table2 Maximal concentration and frequency ofPPCPs detected in drinking waterPPCPs化合物最大检出质量浓度/(ng㊃L-1)检出频率Atenolol23.0025 Atorvastatin18.008 Bisphenol A 6.002 Butylparaben28.005 Carbamazepine32.0015 Carbazochrome0.892 Chlorfibric acid19.005 Chloramphenicol 2.001 Diclofenac18.004 Fenofibric acid16.003 Fluoxetine0.822 Gemfibrozil 2.1010 Hydrochlorthiazide7.0010 Ibuprofen39.008 Ketoprofen7.003 Meprobamate42.0014 Metoprolol 1.002 Methylparaben12.006 Naproxen11.0010 Oxazepam 2.502 Paracetamol45.004 Phenytoin19.0015 Pravastatin0.201 Propylparaben9.005 Salicylic acid31.0021 Sotalol 3.004 Sulfamethoxazole 3.006 Sulpiride0.173 Thiamphenicol7.006 Triclocarban13.002 Triclosan 1.201 Trimethoprim 1.001图2 废水到饮用水的处理过程(主要包括生物降解㊁吸附㊁光解和氧化)Fig.2 Processes from wastewater to drinking water,mainly including biodegradation,sorption,photolysis,andoxidation2 高级氧化技术(AOPs)高级氧化技术最初在1987年被提出,并逐渐应用于去除有机物,甚至是无机物材料,主要通过与OH㊃的氧化反应来去除.而反应中的OH㊃主要由氧化剂(如O3㊁H2O2)或者能量源(如UV光)或者催化剂(如TiO2㊁LaFeO3)来提供.AOPs可以将污染物从几百mg/L减小到低于5μg/L,因此被称为 21世纪的水处理工艺 .2.1 光催化光催化是指催化剂吸收了紫外-可见-红外辐照后,化学反应速率的改变或者化学反应的发生. TiO2由于其成本低,无毒和光化学稳定成为水处理中广泛使用的半导体光催化剂.从反应机理上看,光催化通过吸收比TiO2带宽更大光子能量产生价带空穴和导带电子,如图3所示.空穴和电子有以下几种可能性:1)重新结合并产生热量;2)分别到达TiO2表面并与吸附在催化剂表面的物质反应.价带空穴可以与水反应生成强氧化剂OH㊃.除TiO2之外,ZnO和LaFeO3也同样作为光催化剂应用于水处理工艺.图3 光催化机理:hv1纯TiO2,hv2金属掺杂TiO2,hv3非金属掺杂TiO2Fig.3Photocatalystic mechanisms:hv1pure TiO2,hv2 metal-doped TiO2,and hv3nonmetal-doped TiO2 2.1.1 UV辐照下的TiO2光催化通常状态下,UV辐照是纯TiO2光催化活性的26第1期马 颖,等:污水中药物和个人护理用品的光降解主要来源,其锐钛矿的能带宽度为3.2eV.已有大量研究表明TiO 2可作为光催化剂对PPCPs 进行降解.Hu 等[26]合成了TiO 2纳米线(10~20nm 宽㊁100μm 长)并且研究了UV 辐照下PPCPs 的光催化降解动力学,结果表明选定PPCPs 的降解遵循伪一级反应动力学,且TiO 2纳米膜可用于水处理应用.布洛芬对UV /TiO 2工艺非常敏感[27].在TiO 2质量浓度和初始质量浓度分别为624mg /L 和8.17mg /L 时,布洛芬光催化效率达到最高(残留比率0.4%),在2h 照射之后完全矿化.溶液毒性在20min 时达到最高,并最终达到低于1%,验证了光催化工艺的效率.其他药物如碘普罗胺㊁对乙酰氨基酚㊁磺胺甲恶唑和卡马西平等也有研究报导[28],当水体从缓冲电解液转换到废水流时,降解效率会有变化,如图4所示.降解率的降低表明废水流中的成分对光催化剂有减活化作用.图4 不同水体中药物的降解率Fig.4 Degradation efficiencies in different water matrices2.1.2 可见光辐照下的掺杂TiO 2光催化由于UV 光谱范围仅占太阳光光谱的5%,在光激发TiO 2中太阳光能并未被有效利用,因此制备可见光吸收的TiO 2催化剂吸引了研究人员的关注.减小TiO 2带宽的方法之一就是掺杂,包括金属掺杂和非金属掺杂,通过提高价带能量或者降低导带能量来达到减小带宽的效果.如图3所示,通过金属掺杂,电子吸收能量为hv 2的光子从缺陷态被激发跃迁到导带(conduction band,CB).另外,过渡金属掺杂可以提高电子俘获率并且阻止辐照过程中电子-空穴对复合,从而提高光催化活性.在非金属掺杂中,UV 辐照下电子从价带(valence band,VB)和杂质能级被激发,可见光辐照下仅在杂质能级激发.铂掺杂是TiO 2(Pt ion -TiO 2)金属掺杂的一种,在可见光辐照下对二氯乙酸盐的降解结果表明,Pt ion -TiO 2有良好的催化效果[29].催化原理可描述为Pt 4+hv ңPt 3+(或俘获电子)+h +vbPt 2+hv ңPt 3+(或俘获空穴)+e -cb碘掺杂是一种常用的非金属掺杂方法,常采用碘酸作为掺杂剂.研究表明,与其他纳米材料相比,碘掺杂的金红石相TiO 2纳米线能达到最好的甲基蓝降解效果.这种增强的光催化特性归因于I O Ti 键中存在的氧空位㊁碘空位和TiO 2晶格中Ti 3+的3d 态[30].另一种达到可见光催化效果的方法为将TiO 2与窄带半导体耦合.耦合的半导体应该有更低的导带电势和价带电势.如图5所示,这种方法的原理是促进光诱导电子-空穴对的分离.但这种方法的明显缺点是耦合半导体的导带电子还原性降低,导致TiO 2价带空穴的高氧化性无法应用.图5 TiO 2与半导体耦合可见光催化机理Fig.5 Schematic diagram for the visible light photocatalyticmechanisms of TiO 2coupled with a semiconductor2.1.3 钙钛矿LaFeO 3的可见光催化钙钛矿氧化物ABO 3因其稳定性和高光催化活性成为水处理中的新兴材料.LaFeO 3作为一种典型的钙钛矿化合物,由于其催化氧化㊁表面电子态和气敏特性的广泛应用吸引了众多研究者的关注.此外,由于其特有的光电特性和窄带宽,LaFeO 3在可见光催化中也有应用.到目前为止,尽管LaFeO 3在PPCPs 的去除方面研究不多,但仍有研究专注于LaFeO 3的可见光催化特性[31].Hu 等[32]合成了采用溶胶凝胶法合成了LaFeO 3和La 2FeTiO 6,并将其用于可见光下对氯酚的光催化降解.在5h 可见光照射后,对氯酚在这2种材料下的降解率分别达到49%和62.1%.La 2FeTiO 6具有较高的光催化活性是由于其表面积更大,而颗粒直径更小.2.2 光解工艺光解包括目标分子和光的相互作用和感应出的36北京工业大学学报2016年光化学反应导致中间物的直接分解到最终矿化.饮用水的物理杀菌主要通过紫外灯的直接光解,这种方法相对于氯化的优势是将消毒副产物的产生降到最低.然而,通常的UV消毒参数400J/m2对于饮用水中PPCPs的处理远远不够.在中性缓冲液中,炔雌醇㊁双氯芬酸㊁胺磺甲恶唑和碘普罗胺仅有部分去除(0.4%~27%)[33].提高UV的光解效率可通过与H2O2结合来实现,主要机理为OH㊃的强氧化性.H2O2+hvң2OH㊃与UV单独处理相比,H2O2的添加明显增大了PPCPs的降解率,如图6所示.图6 UV和UV/H2O2处理工艺中41种药物的降解率Fig.6 Removal efficiency of the41pharmaceuticals detected during UV and UV/H2O2processes2.3 臭氧化工艺臭氧是一种强氧化剂,并且可分解为比其氧化性更强的OH㊃,因此臭氧化包含非直接氧化,可通过亲电子原理选择性氧化有机分子的特定官能团.不同于臭氧,OH㊃是一种非选择性氧化剂,可通过自由基加成㊁抽氢反应和电子转移原理对PPCPs和其他有机污染物进行降解.臭氧产生OH㊃的机理为O3+OH-ңO㊃-3+OH㊃O㊃-3ңO2+O㊃-O㊃-3+H+ңOH㊃臭氧在PPCPs中的应用已引起了不少研究者的关注.Snyder等[34]研究了在地表水和废水水体中PPCPs的臭氧化研究,结果表明大部分PPCP化合物都能被去除90%以上,其中卡马西平㊁布洛芬㊁萘普生等几乎被完全去除,如图7所示.UV辐照能促进臭氧的快速分解以产生OH㊃.其反应机理与臭氧产生OH㊃的机理类似,但反应速率更快.由于UV的直接光解㊁臭氧的直接作用和OH㊃的氧化作用,O3/UV对PPCPs的去除比O3更有效.32图7 O3和O3/H2O2工艺对PPCPs的去除效率Fig.7 PPCPs removal efficiencies using O3andO3/H2O2processesH2O2+hvң2OH㊃在O3/H2O2系统中,化学需氧量和溶性有机碳的去除效率取决于OH㊃的产生量.OH㊃的产生可描述46第1期马颖,等:污水中药物和个人护理用品的光降解为以下反应:2O3+H2O2ң2OH㊃+3O2因此,在不同H2O2和O3的比例中,当O3/H2O2为0.5时表现出最高的有机物去除效率,如图8所示.因此在O3/H2O2工艺中,H2O2和O3的比例是关键[35].图8 O3和O3/H2O2对COD和DOC去除的影响Fig.8Effect of O3and O3/H2O2treatment on COD and DOC removal2.4 电催化电催化是在电极表面通过改变电化学速率的催化,与反应物㊁中间产物和最终产物的吸附密切相关.电催化和多相催化的主要区别在于直接阳极氧化,即反应物在阳极被吸附,又被阴极电子转移反应分解.2.4.1 TiO2纳米膜电极的光电催化(photoelectroca-talysis,PEC)为阻止电子空穴对的快速复合和提高TiO2膜的光催化效率,通过在TiO2镀膜电极上外加偏置电位使其结合电化学和光催化的光电催化技术被提出.研究表明,卡马西平可采用PEC进行降解,TiO2阳极由脉冲激光沉积方法制备[36].制备的TiO2阳极电极为锐钛矿结构,纳米颗粒大约为15nm.处理时间和污染物质量浓度在卡马西平降解中所占比例为70.6%和23.3%,阴极材料和电流强度分别占2.4%和0.75%.在最优条件下PECO工艺能氧化73.5%的卡马西平,并有21.2%完全矿化.氨酰安替比林的降解表明,与其他技术如电解㊁直接光解和光催化降解相比,PEC工艺在2h处理后能达到62.1%的降解率,而其他3种技术的降解率分别为3%㊁38%和50.8%.2.4.2 TiO2纳米管阵列(nanotube arrays,TNAs)电极的光电催化在典型的基于TiO2的PEC中,有2个因素是影响总体降解效率的关键:TiO2催化剂和反应器的结构.近期,通过电化学阳极氧化生长的高度有序的TNAs因其独特的微结构吸引了众多关注.Bai等[37]制备了一种带有双面TNAs电极的薄层状PEC 反应器并将其成功应用于四环素的降解.这些纳米管高度有序,如图9所示,直径约为100nm,壁厚约10nm,程度约420nm.采用该反应器的有机物降解速率比相同反应条件下传统的PEC反应器高.当UV在5mW/cm2时辐照1h后,质量浓度20~ 120mg/L的四环素的PEC降解率可达到96.4%~ 54.8%,而传统的PEC反应器只能达到80.4%~ 14.6%.图9 TNAs的俯视与横截面FE-SEM图Fig.9 FE-SEM top-view and cross-section(inset)of TNAs3 总结与展望PPCPs在水环境中的迁移转化在近几十年来吸引了众多关注.PPCPs通常不易降解,因此会对环境产生长期且不可逆转的威胁.虽然在环境中的质量浓度仅为μg/L到ng/L,但其长期积累对环境危害及人类健康的影响不容忽视.现代分析手段的发展使其检测变得可行.然而关于众多PPCP化合物的毒性和降解副产物的研究仍不多见.从现有的实验数据来看,传统水处理对PPCPs的去除限制可由AOPs来解除.而AOPs存在高成本的风险,因此水处理中PPCPs的去除仍需要寻找更合适更经济的方式.光激发纳米材料催化降解可能是一种低耗环保的解决方案.发展太阳光(可见光)激活的纳米材料催化降解是未来研究与发展的重点.56北京工业大学学报2016年参考文献:[1]DAUGHTON C G,TERNES T A.Pharmaceuticals and personal care products in the environment:agents of subtle change?[J].Environmental Health Perspectives,1999, 107(Suppl6):907.[2]HU A M,APBLETT A.Nanotechnology for water treatment and purification[M].New York:Springer, 2014:1-46.[3]MÉNDEZ-ARRIAGA F,ESPLUGAS S,GIMÉNEZ J. Photocatalytic degradation of non-steroidal anti-inflammatory drugs with TiO2and simulated solar irradiation[J].Water Research,2008,42(3):585-594.[4]SUÁREZ S,CARBALLA M,OMIL F,et al.How are pharmaceutical and personal care products(PPCPs) removed from urban wastewaters?[J].Reviews in Environmental Science and Bio/Technology,2008,7(2): 125-138.[5]DANESHVAR A,ABOULFADL K,VIGLINO L,et al. Evaluating pharmaceuticals and caffeine as indicators of fecal contamination in drinking water sources of the Greater Montreal region[J].Chemosphere,2012,88(1):131-139.[6]ZHANG S,ZHANG Q,DARISAW S,et al.Simultaneous quantification of polycyclic aromatic hydrocarbons (PAHs),polychlorinated biphenyls(PCBs),and pharmaceuticals and personal care products(PPCPs)in Mississippi river water,in New Orleans,Louisiana,USA [J].Chemosphere,2007,66(6):1057-1069. [7]KOSMA C I,LAMBROPOULOU D A,ALBANIS T A. Occurrence and removal of PPCPs in municipal and hospital wastewaters in Greece[J].Journal of Hazardous Materials,2010,179(1):804-817.[8]LAJEUNESSE A,GAGNON C.Determination of acidic pharmaceutical products and carbamazepine in roughly primary-treated wastewater by solid-phase extraction and gas chromatography-tandem mass spectrometry[J]. International Journal of Environmental Analytical Chemistry,2007,87(8):565-578.[9]FENT K,WESTON A A,CAMINADA D.Ecotoxicology of human pharmaceuticals[J].Aquatic Toxicology,2006, 76(2):122-159.[10]LIN A Y C,YU T H,LATEEF S K.Removal ofpharmaceuticals in secondary wastewater treatmentprocesses in Taiwan[J].Journal of Hazardous Materials,2009,167(1):1163-1169.[11]ROBERTS P H,THOMAS K V.The occurrence ofselected pharmaceuticals in wastewater effluent andsurface waters of the lower Tyne catchment[J].Scienceof the Total Environment,2006,356(1):143-153.[12]GROS M,PETROVI'C M,BARCEL'O D.Development ofa multi-residue analytical methodology based on liquidchromatography-tandem mass spectrometry(LC-MS/MS)for screening and trace level determination ofpharmaceuticals in surface and wastewaters[J].Talanta,2006,70(4):678-690.[13]KLEYWEGT S,PILEGGI V,YANG P,et al.Pharmaceuticals,hormones and bisphenol A in untreatedsource and finished drinking water in Ontario,Canadaoccurrence and treatment efficiency[J].Science of theTotal Environment,2011,409(8):1481-1488. [14]PARK J.An approach for developing aquaticenvironmental risk assessment framework forpharmaceuticals in Korea[M].Sejong:KoreaEnvironment Institute,2006:1-196.[15]KUCH H M,BALLSCHMITER K.Determination ofendocrine-disrupting phenolic compounds and estrogensin surface and drinking water by HRGC-(NCI)-MS inthe picogram per liter range[J].Environmental Science&Technology,2001,35(15):3201-3206. [16]BUXTON H T,KOLPIN D W.Pharmaceuticals,hormones,and other organic wastewater contaminants inUS streams[M].Hoboken:John Wiley&Sons,Inc,2002:605-608.[17]LISHMAN L,SMYTH S A,SARAFIN K,et al.Occurrenceand reductions of pharmaceuticals and personal careproducts and estrogens by municipal wastewater treatmentplants in Ontario,Canada[J].Science of the TotalEnvironment,2006,367(2):544-558.[18]YOON Y,RYU J,OH J,et al.Occurrence of endocrinedisrupting compounds,pharmaceuticals,and personalcare products in the Han River(Seoul,South Korea)[J].Science of the Total Environment,2010,408(3):636-643.[19]G'OMEZ M J,BUENO M J M,LACORTE S,et al.Pilotsurvey monitoring pharmaceuticals and relatedcompounds in a sewage treatment plant located on theMediterranean coast[J].Chemosphere,2007,66(6):993-1002.[20]SNYDER S A,KEITH T L,VERBRUGGE D A,et al.Analytical methods for detection of selected estrogeniccompounds in aqueous mixtures[J].EnvironmentalScience&Technology,1999,33(16):2814-2820.[21]JELI'C A,PETROVI'C M,BARCEL'O D.Pharmaceuticalsin drinking water[M].Berlin:Springer,2012:47-70.[22]CARMONA E,ANDREU V,PIC'O Y.Occurrence ofacidic pharmaceuticals and personal care products in66第1期马颖,等:污水中药物和个人护理用品的光降解Turia River Basin:from waste to drinking water[J].Science of the Total Environment,2014,484:53-63.[23]VULLIET E,CREN-OLIV'E C,GRENIER-LOUSTALOT MF.Occurrence of pharmaceuticals and hormones in drinkingwater treated from surface waters[J].EnvironmentalChemistry Letters,2011,9(1):103-114. [24]QIAO T,YU Z,ZHANG X,et al.Occurrence and fateof pharmaceuticals and personal care products in drinkingwater in southern China[J].Journal of EnvironmentalMonitoring,2011,13(11):3097-3103. [25]GERRITY D W,BENOTTI M J,RECKHOW D A,etal.Biophysico-chemical processes of anthropogenicorganic compounds in environmental systems[M].Hoboken:John Wiley&Sos,Inc,2011:233-249.[26]HU A,ZHANG X,OAKES K D,et al.Hydrothermalgrowth of free standing TiO2nanowire membranes forphotocatalytic degradation of pharmaceuticals[J].Journalof Hazardous Materials,2011,189(1):278-285. [27]CALZA P,SAKKAS V A,MEDANA C,et al.Photocatalytic degradation study of diclofenac overaqueous TiO2suspensions[J].Applied Catalysis B:Environmental,2006,67(3):197-205. [28]CARBONARO S,SUGIHARA M N,STRATHMANN T J.Continuous-flow photocatalytic treatment of pharmaceuticalmicropollutants:activity,inhibition,and deactivation ofTiO2photocatalysts in wastewater effluent[J].AppliedCatalysis B:Environmental,2013,129:1-12. [29]KIM S,HWANG S J,CHOI W.Visible light activeplatinum-ion-doped TiO2photocatalyst[J].The Journalof Physical Chemistry B,2005,109(51):24260-24267.[30]LI W,LIANG R,HU A,et al.Generation of oxygenvacancies in visible light activated one-dimensionaliodine TiO2photocatalysts[J].RSC Advances,2014,4(70):36959-36966.[31]KUMAR R D,JAVAVEL R,Facile hydrothermalsynthesis and characterization of LaFeO3nanospheres forvisible light photocatalytic applications[J].Journal ofMaterials Science:Materials in Electronics,2014,25(9):3953-3961.[32]HU R,LI C,WANG X,et al.Photocatalytic activities ofLaFeO3and La2FeTiO6in p-chlorophenol degradationunder visible light[J].Catalysis Communications,2012,29:35-39.[33]CANONICA S,MEUNIER L,VON GUNTEN U.Phototransformation of selected pharmaceuticals duringUV treatment of drinking water[J].Water Research,2008,42(1):121-128.[34]SNYDER S A,WERT E C,REXING D J,et al.Ozoneoxidation of endocrine disruptors and pharmaceuticals insurface water and wastewater[J].Ozone:Science andEngineering,2006,28(6):445-460. [35]LAU T K,CHU W,GRAHAM N.Reaction pathwaysand kinetics of butylated hydroxyanisole with UV,ozonation,and UV/O3processes[J].Water Research,2007,41(4):765-774.[36]DAGHRIR R,DROGUI P,DIMBOUKOU-MPIRA A,etal.Photoelectrocatalytic degradation of carbamazepineusing Ti/TiO2nanostructured electrodes deposited bymeans of a pulsed laser deposition process[J].Chemosphere,2013,93(11):2756-2766. [37]BAI J,LIU Y,LI J,et al.A novel thin-layerphotoelectrocatalytic(PEC)reactor with double-facedtitania nanotube arrays electrode for effective degradationof tetracycline[J].Applied Catalysis B:Environmental,2010,98(3):154-160.(责任编辑杨开英)76。