第八章8-2 两小球的质量都是m ,都用长为l 的细绳挂在同一点,它们带有相同电量,静止时两线夹角为2θ ,如题8-2图所示.设小球的半径和线的质量都可以忽略不计,求每个小球所带的电量.解: 如题8-2图示⎪⎩⎪⎨⎧===220)sin 2(π41sin cos θεθθl q F T mg T e解得 θπεθtan 4sin 20mg l q =8-11 半径为1R 和2R (2R >1R )的两无限长同轴圆柱面,单位长度上分别带有电量λ和-λ,试求:(1)r <1R ;(2) 1R <r <2R ;(3) r >2R 处各点的场强.解: 高斯定理0d ε∑⎰=⋅qS E s取同轴圆柱形高斯面,侧面积rl S π2=则 rl E S E Sπ2d =⋅⎰对(1) 1R r < 0,0==∑E q(2) 21R r R << λl q =∑ ∴ rE 0π2ελ=沿径向向外(3) 2R r >=∑q ∴ 0=E题8-12图8-12两个无限大的平行平面都均匀带电,电荷的面密度分别为1σ和2σ,试求空间各处场强.解: 如题8-12图示,两带电平面均匀带电,电荷面密度分别为1σ与2σ,两面间, n E )(21210σσε-= 1σ面外, n E)(21210σσε+-=2σ面外, n E )(21210σσε+= n:垂直于两平面由1σ面指为2σ面. 8-13 半径为R 的均匀带电球体内的电荷体密度为ρ,若在球内挖去一块半径为r <R 的小球体,如题8-13图所示.试求:两球心O 与O '点的场强,并证明小球空腔内的电场是均匀的.解: 将此带电体看作带正电ρ的均匀球与带电ρ-的均匀小球的组合,见题8-13图(a).(1) ρ+球在O 点产生电场010=E , 球在O 点产生电场'd π4π3430320OO r E ερ=∴ O 点电场'd 33030OO r E ερ= ;(2) ρ+在O '产生电场'dπ4d 3430301OO E ερπ='球在O '产生电场002='E∴ O ' 点电场 003ερ='E'OO题8-13图(a) 题8-13图(b)(3)设空腔任一点P 相对O '的位矢为r',相对O 点位矢为r (如题8-13(b)图)则 03ερr E PO =, 03ερr E O P '-=' ,∴ 0003'3)(3ερερερd OO r r E E E O P PO P =='-=+=' ∴腔内场强是均匀的. 8-16 如题8-16图所示,在A ,B 两点处放有电量分别为+q ,-q 的点电荷,AB 间距离为2R ,现将另一正试验点电荷0q 从O 点经过半圆弧移到C 点,求移动过程中电场力作的功.解: 如题8-16图示 0π41ε=O U 0)(=-RqR q0π41ε=O U )3(R qR q -R q 0π6ε-= ∴Rq q U U q A o C O 00π6)(ε=-= 8-17 如题8-17图所示的绝缘细线上均匀分布着线密度为λ的正电荷,两直导线的长度和半圆环的半径都等于R .试求环中心O 点处的场强和电势.解: (1)由于电荷均匀分布与对称性,AB 和CD 段电荷在O 点产生的场强互相抵消,取θd d R l =则θλd d R q =产生O 点Ed 如图,由于对称性,O 点场强沿y 轴负方向题8-17图θεθλππcos π4d d 2220⎰⎰-==R R E E y R 0π4ελ=[)2sin(π-2sin π-]R 0π2ελ-= (2) AB 电荷在O 点产生电势,以0=∞U⎰⎰===AB200012ln π4π4d π4d R R x x x x U ελελελ 同理CD 产生2ln π402ελ=U 半圆环产生0034π4πελελ==R R U ∴ 0032142ln π2ελελ+=++=U U U U O 8-22 三个平行金属板A ,B 和C 的面积都是200cm 2,A 和B 相距4.0mm ,A 与C 相距2.0mm .B ,C 都接地,如题8-22图所示.如果使A 板带正电3.0×10-7C ,略去边缘效应,问B 板和C 板上的感应电荷各是多少?以地的电势为零,则A 板的电势是多少? 解: 如题8-22图示,令A 板左侧面电荷面密度为1σ,右侧面电荷面密度为2σ题8-22图(1)∵ AB AC U U =,即∴AB AB AC AC E E d d = ∴2d d 21===ACABAB AC E E σσ 且 1σ+2σS q A =得,32S q A =σ Sq A321=σ 而7110232-⨯-=-=-=A C q S q σC C10172-⨯-=-=S q B σ(2) 301103.2d d ⨯===AC AC AC A E U εσV 8-23 两个半径分别为1R 和2R (1R <2R )的同心薄金属球壳,现给内球壳带电+q ,试计算:(1)外球壳上的电荷分布及电势大小;(2)先把外球壳接地,然后断开接地线重新绝缘,此时外球壳的电荷分布及电势; *(3)再使内球壳接地,此时内球壳上的电荷以及外球壳上的电势的改变量. 解: (1)内球带电q +;球壳内表面带电则为q -,外表面带电为q +,且均匀分布,其电势题8-23图⎰⎰∞∞==⋅=2220π4π4d d R R R qr r q r E U εε (2)外壳接地时,外表面电荷q +入地,外表面不带电,内表面电荷仍为q -.所以球壳电势由内球q +与内表面q -产生:0π4π42020=-=R q R q U εε(3)设此时内球壳带电量为q ';则外壳内表面带电量为q '-,外壳外表面带电量为+-q q ' (电荷守恒),此时内球壳电势为零,且0π4'π4'π4'202010=+-+-=R q q R q R q U A εεε得q R R q 21=' 外球壳上电势 ()22021202020π4π4'π4'π4'R q R R R q q R q R q U B εεεε-=+-+-= 8-29 两个同轴的圆柱面,长度均为l ,半径分别为1R 和2R (2R >1R ),且l >>2R -1R ,两柱面之间充有介电常数ε的均匀电介质.当两圆柱面分别带等量异号电荷Q 和-Q 时,求: (1)在半径r 处(1R <r <2R =,厚度为dr ,长为l 的圆柱薄壳中任一点的电场能量密度和整个薄壳中的电场能量;(2)电介质中的总电场能量;(3)圆柱形电容器的电容. 解: 取半径为r 的同轴圆柱面)(S则rlD S D S π2d )(=⋅⎰当)(21R r R <<时,Q q =∑∴rl QD π2= (1)电场能量密度 22222π82l r Q D w εε==薄壳中 rlrQ rl r l r Q w W εευπ4d d π2π8d d 22222===(2)电介质中总电场能量 ⎰⎰===211222ln π4π4d d R R VR R l Q rl r Q W W εε (3)电容:∵ C Q W 22= ∴ )/ln(π22122R R lW Q C ε== 第九章题9-7图9-7 如题9-7图所示,AB 、CD 为长直导线,C B为圆心在O 点的一段圆弧形导线,其半径为R .若通以电流I ,求O 点的磁感应强度.解:如题9-7图所示,O 点磁场由AB 、C B、CD 三部分电流产生.其中产生 01=B 产生RIB 1202μ=,方向垂直向里段产生 )231(2)60sin 90(sin 24003-πμ=-πμ=︒︒R I R I B ,方向⊥向里 ∴)6231(203210ππμ+-=++=R I B B B B ,方向⊥向里. 9-8 在真空中,有两根互相平行的无限长直导线1L 和2L ,相距0.1m ,通有方向相反的电流,1I =20A,2I =10A ,如题9-8图所示.A ,B 两点与导线在同一平面内.这两点与导线2L 的距离均为5.0cm .试求A ,B 两点处的磁感应强度,以及磁感应强度为零的点的位置.题9-8图解:如题9-8图所示,A B方向垂直纸面向里42010102.105.02)05.01.0(2-⨯=⨯+-=πμπμI I B A T(2)设0=B在2L 外侧距离2L 为r 处则02)1.0(220=-+rI r Iπμπμ 解得 1.0=r m 9-12 两平行长直导线相距d =40cm ,每根导线载有电流1I =2I =20A ,如题9-12图所示.求: (1)两导线所在平面内与该两导线等距的一点A 处的磁感应强度; (2)通过图中斜线所示面积的磁通量.(1r =3r =10cm,l =25cm).解:(1) 52010104)2(2)2(2-⨯=+=d I dI B A πμπμ T方向⊥纸面向外(2)取面元r l S d d =612010110102.23ln 31ln 23ln 2])(22[1211-+⨯=πμ=πμ-πμ=-πμ+πμ=⎰l I l I l I ldr r d I r I r r r Φ 9-16 一根很长的同轴电缆,由一导体圆柱(半径为a )和一同轴的导体圆管(内、外半径分别为b ,c )构成,如题9-16图所示.使用时,电流I 从一导体流去,从另一导体流回.设电流都是均匀地分布在导体的横截面上,求:(1)导体圆柱内(r <a ),(2)两导体之间(a <r <b ),(3)导体圆筒内(b <r <c )以及(4)电缆外(r >c )各点处磁感应强度的大小解: ⎰∑μ=⋅L I l B 0d (1)a r < 2202R Ir r B μπ= 202RIr B πμ=(2) b r a << I r B 02μπ= rIB πμ20=(3)c r b << I b c b r I r B 0222202μμπ+---= )(2)(22220b c r r c I B --=πμ (4)c r > 02=r B π0=B题9-16图题9-17图9-17 在半径为R 的长直圆柱形导体内部,与轴线平行地挖成一半径为r 的长直圆柱形空腔,两轴间距离为a ,且a >r ,横截面如题9-17图所示.现在电流I 沿导体管流动,电流均匀分布在管的横截面上,而电流方向与管的轴线平行.求:(1)圆柱轴线上的磁感应强度的大小;(2)空心部分轴线上的磁感应强度的大小. 解:空间各点磁场可看作半径为R ,电流1I 均匀分布在横截面上的圆柱导体和半径为r 电流2I -均匀分布在横截面上的圆柱导体磁场之和.(1)圆柱轴线上的O 点B 的大小: 电流1I 产生的01=B ,电流2I -产生的磁场222020222r R Ir a a I B -==πμπμ ∴)(222200r R a Ir B -=πμ (2)空心部分轴线上O '点B 的大小: 电流2I 产生的02='B , 电流1I 产生的222022r R Ia a B -πμ=')(2220r R Ia -=πμ ∴)(22200r R Ia B -='πμ 0=M .题9-19图9-19 在磁感应强度为B的均匀磁场中,垂直于磁场方向的平面内有一段载流弯曲导线,电流为I ,如题9-19图所示.求其所受的安培力.解:在曲线上取l d 则 ⎰⨯=baab B l I F d∵ l d 与B 夹角l d <,2π>=B不变,B是均匀的.∴ ⎰⎰⨯=⨯=⨯=b ab aab B ab I B l I B l I F)d (d 方向⊥ab 向上,大小BI F ab =ab题9-20图9-20 如题9-20图所示,在长直导线AB 内通以电流1I =20A ,在矩形线圈CDEF 中通有电流2I =10 A ,AB 与线圈共面,且CD ,EF 都与AB 平行.已知a =9.0cm,b =20.0cm,d =1.0 cm ,求:(1)导线AB 的磁场对矩形线圈每边所作用的力;(2)矩形线圈所受合力和合力矩.解:(1)CD F 方向垂直CD 向左,大小 4102100.82-⨯==dI b I F CD πμ N同理FE F方向垂直FE 向右,大小 5102100.8)(2-⨯=+=a d I bI F FE πμ NCF F 方向垂直CF 向上,大小为 ⎰+-⨯=+πμ=πμ=a d d CF da d I I r r I I F 5210210102.9ln 2d 2 NED F方向垂直ED 向下,大小为 5102.9-⨯==CF ED F F N(2)合力ED CF FE CD F F F F F+++=方向向左,大小为 4102.7-⨯=F N合力矩B P M m ⨯= ∵ 线圈与导线共面 ∴B P m // 0=M9-23 一长直导线通有电流1I =20A ,旁边放一导线ab ,其中通有电流2I =10A ,且两者共面,如题9-23图所示.求导线ab 所受作用力对O 点的力矩. 解:在ab 上取r d ,它受力 ab F ⊥d 向上,大小为 rI rI F πμ2d d 102= F d 对O 点力矩F r M ⨯=d M d 方向垂直纸面向外,大小为 r II F r M d 2d d 210πμ==⎰⎰-⨯===b a bar I I M M 6210106.3d 2d πμ m N ⋅题9-23图9-30 螺绕环中心周长L =10cm ,环上线圈匝数N =200匝,线圈中通有电流I =100 mA . (1)当管内是真空时,求管中心的磁场强度H 和磁感应强度0B;(2)若环内充满相对磁导率r μ=4200的磁性物质,则管内的B和H 各是多少?*(3)磁性物质中心处由导线中传导电流产生的0B 和由磁化电流产生的B′各是多少?解: (1) I l H l ∑=⋅⎰ d NI HL = 200==LNIH 1m A -⋅400105.2-⨯==H B μT (2)200=H 1m A -⋅05.1===H H B o r μμμ T(3)由传导电流产生的0B 即(1)中的40105.2-⨯=B T∴由磁化电流产生的05.10≈-='B B B T第十章10-4 如题10-4图所示,载有电流I 的长直导线附近,放一导体半圆环MeN 与长直导线共面,且端点MN 的连线与长直导线垂直.半圆环的半径为b ,环心O 与导线相距a .设半圆环以速度v 平行导线平移.求半圆环内感应电动势的大小和方向及MN 两端的电N M U U -.解: 作辅助线MN ,则在MeNM 回路中,沿v方向运动时0d =m Φ ∴0=MeNM ε 即MN MeN εε= 又∵0cos d ln 02a bMN a bIv a bvB l a bμεππ+--==<+⎰所以MeN ε沿NeM 方向, 大小为ba ba Iv -+ln20πμ M 点电势高于N 点电势,即 ba ba Iv U U N M -+=-ln 20πμ 题10-5图10-5如题10-5所示,在两平行载流的无限长直导线的平面内有一矩形线圈.两导线中的电流方向相反、大小相等,且电流以tId d 的变化率增大,求: (1)任一时刻线圈内所通过的磁通量; (2)线圈中的感应电动势. 解: 以向外磁通为正则(1) ]ln [lnπ2d π2d π2000dad b a b Ilr l r Ir l r Iab bad d m +-+=-=⎰⎰++μμμΦ (2) tIb a b d a d l t d d ]ln [ln π2d d 0+-+=-=μΦε10-7 如题10-7图所示,长直导线通以电流I =5A ,在其右方放一长方形线圈,两者共面.线圈长b =0.06m ,宽a =0.04m ,线圈以速度v =0.03m ·s -1垂直于直线平移远离.求:d =0.05m时线圈中感应电动势的大小和方向.题10-7图解: AB 、CD 运动速度v方向与磁力线平行,不产生感应电动势.DA 产生电动势⎰==⋅⨯=AD I vb vBb l B v d2d )(01πμεBC 产生电动势)(π2d )(02d a Ivbl B v CB+-=⋅⨯=⎰με∴回路中总感应电动势8021106.1)11(π2-⨯=+-=+=ad d Ibv μεεε V 方向沿顺时针.10-8 长度为l 的金属杆ab 以速率v 在导电轨道abcd 上平行移动.已知导轨处于均匀磁场B中,B 的方向与回路的法线成60°角(如题10-8图所示),B的大小为B =kt (k 为正常).设t =0时杆位于cd 处,求:任一时刻t 导线回路中感应电动势的大小和方向.解: ⎰==︒=⋅=22212160cos d klvt lv kt Blvt S B m Φ ∴klvt t m -=-=d d Φε 即沿abcd 方向顺时针方向.题10-8图10-10 导线ab 长为l ,绕过O 点的垂直轴以匀角速ω转动,aO =3l磁感应强度B 平行于转轴,如图10-10所示.试求: (1)两端的电势差;(2)b a ,两端哪一点电势高?解: (1)在Ob 上取dr r r +→一小段 则⎰==320292d l Ob l B r rB ωωε 同理⎰==302181d lOa l B r rB ωωε∴ 2261)92181(l B l B Ob aO ab ωωεεε=+-=+= (2)∵ 0>ab ε 即0<-b a U U ∴b 点电势高.题10-12图10-12 磁感应强度为B的均匀磁场充满一半径为R 的圆柱形空间,一金属杆放在题10-12图中位置,杆长为2R ,其中一半位于磁场内、另一半在磁场外.当tBd d >0时,求:杆两端的感应电动势的大小和方向.解: ∵bc ab ac εεε+= tBR B R t t ab d d 43]43[d d d d 21=--=-=Φε=-=tabd d 2Φεt BR B R t d d 12π]12π[d d 22=-- ∴t B R R ac d d ]12π43[22+=ε ∵0d d >tB∴0>ac ε即ε从c a → 十二章12-7 在杨氏双缝实验中,双缝间距d =0.20mm ,缝屏间距D =1.0m ,试求: (1)若第二级明条纹离屏中心的距离为6.0mm ,计算此单色光的波长; (2)相邻两明条纹间的距离.解: (1)由λk dD x =明知,λ22.01010.63⨯⨯=, ∴ 3106.0-⨯=λmm o A 6000= (2) 3106.02.010133=⨯⨯⨯==∆-λd D x mm 12-9 洛埃镜干涉装置如题12-9图所示,镜长30cm ,狭缝光源S 在离镜左边20cm 的平面内,与镜面的垂直距离为2.0mm ,光源波长=λ7.2×10-7m ,试求位于镜右边缘的屏幕上第一条明条纹到镜边缘的距离.题12-9图解: 镜面反射光有半波损失,且反射光可视为虚光源S '发出.所以由S 与S '发出的两光束到达屏幕上距镜边缘为x 处的光程差为 22)(12λλδ+=+-=D x dr r 第一明纹处,对应λδ= ∴25105.44.0250102.72--⨯=⨯⨯⨯==d Dx λmm 12-10 一平面单色光波垂直照射在厚度均匀的薄油膜上,油膜覆盖在玻璃板上.油的折射率为1.30,玻璃的折射率为1.50,若单色光的波长可由光源连续可调,可观察到5000 oA 与7000oA 这两个波长的单色光在反射中消失.试求油膜层的厚度.解: 油膜上、下两表面反射光的光程差为ne 2,由反射相消条件有λλ)21(2)12(2+=+=k k k ne ),2,1,0(⋅⋅⋅=k ① 当50001=λo A 时,有 2500)21(21111+=+=λλk k ne ②当70002=λo A 时,有 3500)21(22222+=+=λλk k ne ③因12λλ>,所以12k k <;又因为1λ与2λ之间不存在3λ满足33)21(2λ+=k ne 式即不存在 132k k k <<的情形,所以2k 、1k 应为连续整数,即112-=k k ④ 由②、③、④式可得:51)1(75171000121221+-=+=+=k k k k λλ 得31=k 2112=-=k k 可由②式求得油膜的厚度为 67312250011=+=nk e λo A 12-12 在折射率1n =1.52的镜头表面涂有一层折射率2n =1.38的Mg 2F 增透膜,如果此膜适用于波长λ=5500 oA 的光,问膜的厚度应取何值?解: 设光垂直入射增透膜,欲透射增强,则膜上、下两表面反射光应满足干涉相消条件,即λ)21(22+=k e n ),2,1,0(⋅⋅⋅=k ∴ 222422)21(n n k n k e λλλ+=+=)9961993(38.14550038.125500+=⨯+⨯=k k o A 令0=k ,得膜的最薄厚度为996oA . 当k 为其他整数倍时,也都满足要求. 12-13 如题12-13图,波长为6800oA 的平行光垂直照射到L =0.12m 长的两块玻璃片上,两玻璃片一边相互接触,另一边被直径d =0.048mm 的细钢丝隔开.求: (1)两玻璃片间的夹角=θ?(2)相邻两明条纹间空气膜的厚度差是多少? (3)相邻两暗条纹的间距是多少?(4)在这0.12 m 内呈现多少条明条纹?题12-13图解: (1)由图知,d L =θsin ,即d L =θ 故 43100.41012.0048.0-⨯=⨯==L d θ(弧度) (2)相邻两明条纹空气膜厚度差为7104.32-⨯==∆λe m(3)相邻两暗纹间距641010850100.421068002---⨯=⨯⨯⨯==θλl m 85.0= mm (4)141≈=∆lLN 条 12-16 当牛顿环装置中的透镜与玻璃之间的空间充以液体时,第十个亮环的直径由1d =1.40×10-2m 变为2d =1.27×10-2m ,求液体的折射率.解: 由牛顿环明环公式2)12(21λR k D r -==空 nR k D r 2)12(22λ-==液两式相除得n D D =21,即22.161.196.12221≈==D D n 12-18 把折射率为n =1.632的玻璃片放入迈克耳逊干涉仪的一条光路中,观察到有150条干涉条纹向一方移过.若所用单色光的波长为λ= 5000oA ,求此玻璃片的厚度. 解: 设插入玻璃片厚度为d ,则相应光程差变化为 λN d n ∆=-)1(2∴)1632.1(2105000150)1(210-⨯⨯=-∆=-n N d λ5109.5-⨯=m 2109.5-⨯=mm 十三章13-12 单缝宽0.10mm ,透镜焦距为50cm ,用5000=λoA 的绿光垂直照射单缝.求:(1)位于透镜焦平面处的屏幕上中央明条纹的宽度和半角宽度各为多少?(2)若把此装置浸入水中(n=1.33),中央明条纹的半角宽度又为多少? 解:中央明纹的宽度为f nax λ2=∆ 半角宽度为naλθ1sin -=(1)空气中,1=n ,所以 3310100.51010.01050005.02---⨯=⨯⨯⨯⨯=∆x m 33101100.51010.0105000sin ----⨯=⨯⨯=θ rad (2)浸入水中,33.1=n ,所以有 33101076.31010.033.110500050.02---⨯≈⨯⨯⨯⨯⨯=∆x m 331011076.3101.033.1105000sin ----⨯≈⨯⨯⨯=θ rad 13-13 用橙黄色的平行光垂直照射一宽为a=0.60mm 的单缝,缝后凸透镜的焦距f=40.0cm ,观察屏幕上形成的衍射条纹.若屏上离中央明条纹中心1.40mm 处的P 点为一明条纹;求:(1)入射光的波长;(2)P 点处条纹的级数;(3)从P 点看,对该光波而言,狭缝处的波面可分成几个半波带?解:(1)由于P 点是明纹,故有2)12(sin λϕ+=k a ,⋅⋅⋅=3,2,1k由ϕϕsin tan 105.34004.13≈=⨯==-f x 故3105.3126.0212sin 2-⨯⨯+⨯=+=k k a ϕλ3102.4121-⨯⨯+=k mm当 3=k ,得60003=λoA 4=k ,得47004=λoA(2)若60003=λoA ,则P 点是第3级明纹; 若47004=λoA ,则P 点是第4级明纹. (3)由2)12(sin λϕ+=k a 可知,当3=k 时,单缝处的波面可分成712=+k 个半波带;当4=k 时,单缝处的波面可分成912=+k 个半波带.13-15 波长为5000oA 的平行单色光垂直照射到每毫米有200条刻痕的光栅上,光栅后的透镜焦距为60cm .求:(1)屏幕上中央明条纹与第一级明条纹的间距;(2)当光线与光栅法线成30°斜入射时,中央明条纹的位移为多少? 解:3100.52001-⨯==+b a mm 6100.5-⨯m (1)由光栅衍射明纹公式λϕk b a =+sin )(,因1=k ,又fx ==ϕϕtan sin所以有λ=+f x b a 1)( 即62101100.51060105000---⨯⨯⨯⨯=+=b a f x λ2100.6-⨯=m 6= cm (2)对应中央明纹,有0=k 正入射时,0sin )(=+ϕb a ,所以0sin =≈ϕϕ 斜入射时,0)sin )(sin (=±+θϕb a ,即0sin sin =±θϕ 因︒=30θ,∴21tan sin ±==≈f x ϕϕ 故22103010602121--⨯=⨯⨯==f x m 30= cm 这就是中央明条纹的位移值. 13-16 波长6000=λoA 的单色光垂直入射到一光栅上,第二、第三级明条纹分别出现在20.0sin =ϕ与30.0sin =ϕ处,第四级缺级.求:(1)光栅常数;(2)光栅上狭缝的宽度;(3)在90°>ϕ>-90°范围内,实际呈现的全部级数.解:(1)由λϕk b a =+sin )(式 对应于20.0sin 1=ϕ与30.0sin 2=ϕ处满足:101060002)(20.0-⨯⨯=+b a 101060003)(30.0-⨯⨯=+b a 得6100.6-⨯=+b a m(2)因第四级缺级,故此须同时满足 λϕk b a =+sin )( λϕk a '=sin解得k k ba a '⨯='+=-6105.14取1='k ,得光栅狭缝的最小宽度为6105.1-⨯m (3)由λϕk b a =+sin )( λϕsin )(b a k += 当2πϕ=,对应max k k =∴ 10106000100.6106max =⨯⨯=+=--λba k 因4±,8±缺级,所以在︒︒<<-9090ϕ范围内实际呈现的全部级数为9,7,6,5,3,2,1,0±±±±±±±=k 共15条明条纹(10±=k 在︒±=90k 处看不到).13-19 已知天空中两颗星相对于一望远镜的角距离为4.84×10-6rad ,它们都发出波长为5500oA 的光,试问望远镜的口径至少要多大,才能分辨出这两颗星?解:由最小分辨角公式 Dλθ22.1= ∴ 86.131084.4105.522.122.165=⨯⨯⨯==--θλD cm 13-20 已知入射的X 射线束含有从0.95~1.30oA 范围内的各种波长,晶体的晶格常数为2.75oA ,当X 射线以45°角入射到晶体时,问对哪些波长的X 射线能产生强反射?解:由布喇格公式 λϕk d =sin 2 得kd ϕλsin 2=时满足干涉相长 当1=k 时, 89.345sin 75.22=⨯⨯=︒λoA 2=k 时,91.1245sin 75.22=⨯⨯=︒λo A 3=k 时,30.1389.3==λo A 4=k 时, 97.0489.3==λo A 故只有30.13=λo A 和97.04=λoA 的X 射线能产生强反射.十四章14-7投射到起偏器的自然光强度为0I ,开始时,起偏器和检偏器的透光轴方向平行.然后使检偏器绕入射光的传播方向转过130°,45°,60°,试分别求出在上述三种情况下,透过检偏器后光的强度是0I 的几倍? 解:由马吕斯定律有 0o 2018330cos 2I I I ==0ο2024145cos 2I I I == 0ο2038160cos 2I I I ==所以透过检偏器后光的强度分别是0I 的83,41,81倍. 14-9 自然光入射到两个重叠的偏振片上.如果透射光强为,(1)透射光最大强度的三分之一,(2)入射光强的三分之一,则这两个偏振片透光轴方向间的夹角为多少? 解:(1)max 120131cos 2I I I ==α 又20max I I = ∴ ,601I I = 故'ο11124454,33cos ,31cos ===ααα. (2) 0220231cos 2I I I ==α ∴'ο221635,32cos ==αα 14-10 一束自然光从空气入射到折射率为1.40的液体表面上,其反射光是完全偏振光.试求:(1)入射角等于多少?(2)折射角为多少? 解:(1),140.1tan 0=i ∴'ο02854=i (2) 'ο0ο323590=-=i y 14-11 利用布儒斯特定律怎样测定不透明介质的折射率?若测得釉质在空气中的起偏振角为58°,求釉质的折射率. 解:由158tan οn=,故60.1=n。