当前位置:文档之家› 高分子化学知识总结

高分子化学知识总结

一、绪论1.聚合物的分类及命名可按来源、合成方法、用途、热行为、结构等来分类,主要是按主链结构来分类,分为:(1)碳链聚合物,(2)杂链聚合物,(3)元素有机聚合物;2.聚合物的命名(1)单体来源命名法烯类聚合物单体名前加“聚”;两种单体合成的,取二者简名加后缀“树脂”“橡胶”; 杂链聚合物按其特征结构命名;*有些聚合物按单体名来命名容易引起混淆,例如[]22OCH CH --,可以从环氧乙烷、乙二醇、氯丙醇或氯甲醚来合成,因为环氧乙烷单体最常用,故通常称作聚环氧乙烷,按结构该聚合物应称作聚氧乙烯。

(2)系统命名法命名原则和程序:先确定重复单元结构,再排好其中次级单元次序,给重复单元命名,最后冠以“聚”字,就成为聚合物的名称。

写次级单元时候,先写侧基最少的元素,再写有取代的亚甲基,然后写无取代的亚甲基。

3.聚合反应(1)按单体-聚合物结构变化分类缩聚 官能团单体多次缩合成聚合物的反应,除形成缩聚物外,还有水、醇、氨或氯化氢等低分子产物产生加聚 烯类单体π键断裂而后加成聚合起来的反应称作加聚,产物称作加聚物。

加聚物结构单元的元素组成与其单体相同,仅仅是电子结构有所变化,因此加聚物的分子量是单体分子量的整数倍开环聚合 环状单体σ键断裂而后聚合成线形聚合物的反应,反应时无低分子副产物产生(2)按聚合物机理分类逐步聚合 多数缩聚和聚加成反应属于逐步聚合,其特征是低分子转变成高分子是缓慢逐步进行的,每步反应的速率和活化能大致相同,单体分子首先聚合成二、三、四具体等低聚物(齐聚物),短期内单体转化率很高,随后,低聚物间相互缩聚分子量缓慢增加,直至集团反应程度很高分子量才达到较高的数值*连锁聚合 多数烯类单体的加聚反应属于连锁聚合。

有自由基、阴离子或阳离子聚合,自由基聚合过程中,分子量变化不大,除微量引发剂外,体系始终由单体和高分子量聚合物组成,没有分子量递增的中间产物,转化率随时间而增大,单体则相应减少。

活性阴离子聚合的特征是分子量随转化率的增大而线性增加。

4.分子量是影响强度的重要因素,聚合物强度随着分子量的增大而增加。

5.平均分子量(1)数均分子量n M (通常由渗透压,蒸汽压等依数性方法测定)定义:某体系的总质量m 被分子总数所平均。

()/i iini i iii i n mmm M x M n nm M ≡===∑∑∑∑∑∑低分子量部分对数均分子量有较大贡献 (2)质均分子量w M (由光散射法测定)2i i i iw i i iiim M n M M w M mn m≡==∑∑∑∑∑(3)粘均分子量v M (略)三种分子量大小依次为:w M >v M >n M ;6.分子量分布(1)分子量分布指数定义为:w M /n M 的比值,可用来表征分布宽度。

对于分子量均一的体系,w M =n M ,w M /n M =1.(2)分子量分布曲线 数均分子量处于曲线分布曲线顶峰附近 7.大分子微结构*线形大分子内结构单元有头头键接合尾尾键接;*大分子链上结构单元中的取代基在空间可能有不同的排布方式,形成手性构型和几何构型两类;(1)手性构型又分为全同(等规)构型、间同(间规)构型、无规构型; (2)几何构型是由大分子链中的双键引起的,双键无法旋转因此会有顺式和反式聚合物。

8.线形或支链形大分子以物理力聚集成聚合物,可溶于适当溶剂中,加热时候可熔融塑化,冷却时后则固化成型,这类聚合物称作热塑性聚合物; *支链形聚合物不容易结晶,高度支链甚至难溶解,只能溶胀;*交联聚合物可以看作许多线形大分子由化学键连接而成的体型结构,交联程度浅的结构受热尚可软化但不再熔融,适当溶剂可使其溶胀但不溶解,交联程度深的体形结构不软化不溶解不溶胀形成了刚性固体;*酚醛树脂、醇酸树脂等在树脂合成阶段,需要控制原料配比和反应条件,使其停留在线形或少量支链的低分子预聚物阶段,成型时,经加热,在是其中潜在官能团继续反应成交联结构而固化,这类聚合物则称作热固性聚合物。

9.聚集态结构聚合物聚集态可以粗分为非晶态(无定形)态和晶态两种。

*液晶高分子,受热熔融(热致性)或被溶剂溶解(溶致性)后,失去了固体的刚 性,转变成液体,但其中晶态分子仍保留着有序排列,呈各向异性,形成兼有 晶体和液体双重性质的过渡状态,称之为液晶态。

10.玻璃态温度:无定形和结晶热塑性聚合物低温时都呈玻璃态,受热至某一 较窄(2-5C )温度,则转变成橡胶态或柔韧的可塑状态,这一转变温度称作玻璃化温度g T ,代表链段能够运动或主链中价键能扭转的温度。

*晶态聚合物继续受热,则出现另一热转变温度------熔点m T ,这代表整个大分子容易运动的温度。

*玻璃化温度是非晶态塑料的使用上限温度,熔点则是晶态塑料的使用上限温度。

11.高分子的力学性能参数:a 弹性模量,b 抗张强度,c 断裂伸长率。

二、缩聚和逐步聚合2.2 缩聚反应(缩聚反应是缩合聚合的简称,是多次缩合重复结果形成缩聚物 的过程)(1) 缩合反应*官能度:一分子中能参与反应的官能团数称作官能度(f );考虑官能度时需以参与的反应集团为基准。

(2)缩合反应线形缩聚的首要条件是需要2-2或2-官能度体系作原料,采用2-3或2-4官能度体系是,除了按线形方向缩聚外,侧基也能缩聚,先形成支链,进一步形成体形结构,这就称作体形缩聚。

(3) 共缩聚羟基酸或氨基酸一种单体的缩聚,可称作均缩聚;由二元酸和二元醇2种单体进行的缩聚是最普通的缩聚;从改进缩聚物结构性能角度考虑,将1种二元酸和2种二元醇、2种二元酸和2种二元醇进行所谓“共缩聚”。

2.3 线形缩聚反应的机理 2.3.1 线形缩聚和成环倾向*线形缩聚时,需考虑单体及其中间产物的成环倾向,一般情况下,五、六元环的结构比较稳定。

*成环是单分子反应,缩聚则是双分子反应,因此,低浓度有利于成环,高浓度有利于线形缩聚。

2.3.2 线形缩聚机理 (特征有2:逐步、可逆) (1)逐步特性缩聚反应无特定的活性种,各步反应速率常数和活化能基本相等,缩聚早期,转化率就很高,因此用基团的反应程度来表述反应的程度更为确切,现已等摩尔二元酸和二元醇的缩聚反应为例来说明*反应程度p 的定义为参与反应的基团数(0N N -)占起始基团数0N 的分数,因此:0001N N Np N N -==-*如将大分子的结构单元数定义为聚合度n X ,则:n N X N==结构单元总数大分子数 进一步可得 11n X p =-;(2) 可逆平衡聚酯化和低分子酯化反应相似,都是可逆平衡反应,正反应是酯化,逆反应是水解。

*平衡常数小,低分子副产物水的存在限制了分子量的提高,需在高度减压条件下脱除;*平衡常数中等,300—400;水对分子量有所影响,聚合早期可在水中进行,只是后期,需要在一定的减压条件下脱水,提高反应程度; *平衡常数很大,K>1000;可以看作不可逆。

2.3.3 缩聚中的副反应(1)消去反应; 影响产物的分子量(2)化学降解; 合成缩聚物的单体往往就是缩聚物的降解药剂 (3)链交换反应;链交换反应将使分子量分布变窄 2.4 线形缩聚动力学 2.4.1 官能团等活性概念在一定聚合度范围内,基团活性与分子量大小无关,形成官能团等活性概念。

2.4.2 线形缩聚动力学 2.4.2.1 不可逆的线形缩聚酯化和聚酯化是可逆平衡反应,如能及时排除副产物水,就符合不可逆的条件 *过程:1羧酸质子化,2质子化种和醇反应成酯; 酸催化的酯化速率方程:[][][]132HAk k COOH OH H d COOH dtk K +⎡⎤⎣⎦-=(1)外加酸催化聚酯化动力学强无机酸常用作酯化的催化剂,聚合速率由酸催化和自催化两部分构成,在缩聚过程中,外加酸或氢离子浓度几乎不变,而且远远大于低分子羧酸自催化的影响,因此,可以忽略自催化的速率;(二级反应)'0111k c t p=+- '01n X k c t =+ 'k 是将COOH 、k1,k2,k3,KHA 合并而成。

(3)自催化聚酯化动力学 ○1羧酸不电离 聚合度随时间变化的关系式:22021n X kc t =+ (三级反应)○2羧酸部分电离 聚合度随时间变化的关系式:2/32/3021n X kc t =+ (二级半反应)2.5 线形缩聚物的聚合度两种基团数相等的2-2体系进行线形缩聚时:(1) 不排除副产物水p =n X=1+(2)高度减压的条件下及时排除副产物水11n X p==≈-2.5.2 基团数比对聚合度的影响二元酸(aAa )和二元醇(bBb )进行缩聚,设a N 、b N 为a 、b 的起始基团数,分别为两种单体分子数的2倍,r 为单体的基团数比或摩尔比,q 为过量摩尔百分比或摩尔分数;()/21/2a b a N N rq N r--==或11r q =+*使两基团数相等的措施有三:(1)单体高度纯化和精确计量;(2)两基团同在一单体分子上,(3)二元胺和二元酸成盐。

*两基团数目不等分三种情况:(1)以aAa 单体为标准,bBb 单体微过量,()/21(2)/212a b n a b a N N rX N N N p r rp++==+-+-有2种极限情况:○1r=1或q=1; 11nX p=-; ○2p=1; 11nrX r+=- 如果r=1,p=1,则聚合度为无穷大,成为一个大分子;(2)aAa 和bBb 两单体等基团数比,另外加但官能团物质Cb (其基团数为'b N ),则按下式计算r ,后代入(1)式;'2ab bN r N N =+ 式中分母中的2表示1个分子Cb 中的1个基团b 相当于一个过量bBb 分子爽官能团的作用。

(2) aRb(如羟基酸)加少量单官能团物质Cb ,'2ab b N r N N =+2.6 线形缩聚物的分子量分布 2.6.1 分子量分布函数*忽略端基的质量,则x-聚体的质量分数或质量分布函数为:()2101x x x W xN xp p W N -==- 2.6.2 分子量分布宽度n X =11p-; 11w p X P +=-;分子量分布指数:12wnX p X =+≈。

2.7.1 Carothers 法凝胶点的预测(理论基础:凝胶点时候的数均聚合度等于无穷大) (1)等基团数*单体混合物的平均官能度定义为每一分子平均带有的基团数:i iiN f fN=∑∑,i N 是官能度为i f 的单体i 的分子数。

凝胶点时的临界反应程度c p 为: 2c p f=; (2)量基团数不相等 ○1两组分体系 *两基团数不相等时,平均官能度应以非过量基团数的2倍除以分子总数来求取,因为反应程度和交联与否取决于含量少的组分,过量反应物质中的一部分并不参与反应。

相关主题