电子与通信工程王世杰2014282120188 第八次作业1、一晶体管的S参量如下:f=750MHz:s11=0.114-j*0.551,s12=0.044+j*0.029,s21=-4.608+j*7.312,s22=0.490-j*0.449;f=1000M:s11=-0.058-j*0.452,s12=0.054+j*0.022,s21=-2.642+j*6.641,s22=0.379-j*0.424;画出晶体管在两个频率下的输出及输入稳定圆并计算各自μ,K,D值。
解:当f=750MHz,编程画出输出及输入稳定圆,并计算μ,K,D的值。
程序如下:close all; % close all opened graphsclear all; % clear all variabless11=0.114-1j*0.551;s12=0.044+1j*0.029;s21=-4.608+1j*7.312;s22=0.490-1j*0.449;s_param=[s11,s12;s21,s22]; % convert the S-parameters into matrix notationsmith_chart; % create a Smith Chartinput_stability(s_param, 'r'); % plot input stability circle in red colorsmith_chart; % create a Smith Chartoutput_stability(s_param, 'b');% plot output stability circle in blue color[d,k,u]=K_factor(s_param);输入输出稳定圆如下:|D|=|S 11S 22-S 12S 21|=0.5561;2221122122110.60482S S DK S S --+==211*2211122110.7755S S S D S S μ-==-+可知在该频率下晶体管不是绝对稳定的当f=1000MHz 时,输入输出稳定圆如下图:|D|=|S11S22-S12S21|=0.4535;2221122122110.80932S S DKS S--+==211*2211122110.9622SS S D S Sμ-==-+可知在该1000MHz频率下晶体管不是绝对稳定的2、已知晶体管的S 参量在传输线特性阻抗为50Ω测得为S 11=0. 57∠170,S 12=0.066∠69,S 21=2.97∠71,S 22=0.46∠-26。
其输入端与V S =3∠0,Z S =50Ω的电压源连接,输出端口接Zin =40Ω的天线。
求放大器的入射功率P inc ,电源的资用功率P A ,负载的吸收功率P L ,转换功率增益G T ,资用功率增益G A 及功率增益G 。
解:编程计算放大器的入射功率,电源的资用功率,负载的吸收功率,转换功率增益,资用功率增益及功率增益:close all ; % close all opened graphs clear all ; % clear all variables Z0=50;s11=0.57*exp(j*(170)/180*pi); s12=0.066*exp(j*(69)/180*pi); s21=2.97*exp(j*(71)/180*pi); s22=0.46*exp(j*(-26)/180*pi); Vs=3; Zs=50; Zl=40;GamaS=(Zs-Z0)/(Zs+Z0); GamaL=(Zl-Z0)/(Zl+Z0); D=s11*s22-s12*s21;GamaIn=s11-GamaL*D/(1-s22*GamaL); GamaOut=s22-GamaS*D/(1-s11*GamaS);Pinc=1/2*(Z0/(Zs+Z0)*abs(Vs))^2/abs(1-GamaIn*GamaS)^2 Pa=1/2*(Z0/(Zs+Z0)*abs(Vs))^2/(1-abs(GamaS*GamaS)^2)Gt=(1-abs(GamaL)^2)*abs(s21)^2*(1-abs(GamaS)^2)/(abs(1-Ga maL*GamaOut)^2*abs(1-s11*GamaS)^2)Ga=abs(s21)^2*(1-abs(GamaS)^2)/((1-abs(GamaOut)^2)*abs(1-s11*GamaS)^2)G=(1-abs(GamaL)^2)*abs(s21)^2/((1-abs(GamaIn)^2)*abs(1-s22*GamaL)^2) Pl=Pa*Gt 计算结果如下:2211.12521S inc in S b P ==-ΓΓ221 1.12521SA Sb P ==-Γ*8.9549L A T P P G ==()()()()222S21L211S out L 117.959911TS G S -Γ-Γ==-Γ-ΓΓ()()()22S212211S out 111.188411A S G S -Γ==-Γ-Γ ()()()2221L22in22L111.933411S G S -Γ==-Γ-Γ3. 已知晶体管在2.0+0.xxxGHz 处的S 参量为S11=0.65∠-25, S12=0.11∠9, S21=5.0∠110, S22=0.65∠-36。
用输入不匹配输出匹配方案设计放大器,在圆图上分别画出增益为最大可能增益的90%,80%,50%的等资用功率增益圆。
若源阻抗及负载阻抗均为50欧,对于增益是50%的情况设计具体的匹配网络。
解:计算K 和D 值为:K=1.0007,D=0.9725,由此可以看出该晶体管绝对稳定。
计算可得该放大器的最大增益max T G =43.8,化为分贝表示为:max T G = 16.4147 dB,画出资用功率分别为15.9572 dB(90%),15.4456 dB(80%),13.4044 dB(50%)的等资用功率圆如图所示:取0.5570.745s j Γ=-- ,则:122122110.838-j0.4851Sout SS S S S ΓΓ=+=-Γ,得到ГL =Гout *=0.838+j0.485。
根据s Γ和L Γ设计匹配电路,频率为2.137GHz : 输入端:并联2.3nH 的电感,然后串联8.0H 的电感输出端:并联586.4pF的电容,然后串联29.3nH的电感function [k,delta] = K_factor(s_param)% Usage: [k,delta] = K_factor(s_param)%% Purpose: returns k factor for a given s-parameter matrix % if k>1 and delta<1 then circuit is uncoditionally stable% otherwise circuit might be unstables11=s_param(1,1);s12=s_param(1,2);s21=s_param(2,1);s22=s_param(2,2);D=det(s_param);delta=abs(D);k=(1-abs(s11)^2-abs(s22)^2+delta^2)/(2*abs(s12.*s21)); endfunction [] = ZiYongGain(s_param,G_goal)%UNTITLED11 Summary of this function goes here% Detailed explanation goes herehold on;s11=s_param(1,1);s12=s_param(1,2);s21=s_param(2,1);s22=s_param(2,2);G_goal_dB=10*log10(G_goal);% find constant operating power gain circlesdelta=det(s_param);K=(1-abs(s11)^2-abs(s22)^2+abs(delta)^2)./(2*abs(s12.*s21 ));ga=G_goal/abs(s21)^2; % normalized the operating power gain % find the center of the constant operating power gain circle dga=ga*conj(s11-delta*conj(s22))/(1+ga*(abs(s11)^2-abs(de lta)^2));% find the radius of the circlerga1=sqrt(1-2*K*ga*abs(s12*s21)+ga^2*abs(s12*s21)^2);rga=rga1/abs(1+ga*(abs(s11)^2-abs(delta)^2));% plot a circle in the Smith Charta=(0:360)/180*pi;hold on;plot(real(dga)+rga*cos(a),imag(dga)+rga*sin(a),'r','linew idth',2);text(real(dga)-0.1,imag(dga)+rga+0.05,strcat('\bf',sprint f('G=%g dB',G_goal_dB)));endclose all;clear all;smith_chart;s11=0.65*exp(1j*(-25)*pi/180);s12=0.11*exp(1j*9*pi/180);s21=5*exp(1j*110*pi/180);s22=0.65*exp(1j*(-36)*pi/180);s_param=[s11,s12;s21,s22];[K,delta] = K_factor(s_param) % check stabilityG_Tmax=abs(s21)*(K-sqrt(K^2-1))/abs(s12)G_Tmax_dB=10*log10(G_Tmax)G1=G_Tmax*0.9G1_dB=10*log10(G1)G2=G_Tmax*0.8G2_dB=10*log10(G2)G3=G_Tmax*0.5G3_dB=10*log10(G3)ZiYongGain(s_param,G1);ZiYongGain(s_param,G2);ZiYongGain(s_param,G3)Gamma_s=0.93*exp(j*(-126.7943)*pi/180);plot(real(Gamma_s),imag(Gamma_s),'bo');text(real(Gamma_s)-0.05,imag(Gamma_s)-0.07,'\bf\Gamma_S') ;。