近代物理实验报告真空镀膜实验学院班级姓名学号时间 2014年4月20日真空镀膜实验实验报告【摘要】:真空镀膜也叫物理气相沉积(PVD:physics vaporous deposit),它是利用某种物理过程,如物质的热蒸发或在受到粒子束轰击时物质表面原子的溅射等现象,实现物质从源物质到薄膜的可控的原子转移过程。
物理气相沉积技术中最为基础的两种方法就是蒸发法和溅射法。
本实验中用到的是蒸发镀膜法来进行真空镀膜,从而了解真空镀膜的原理和操作。
【关键词】:真空镀膜、蒸发镀膜法【引言】:真空镀膜也叫物理气相沉积(PVD:physics vaporous deposit),它是利用某种物理过程,如物质的热蒸发或在受到粒子束轰击时物质表面原子的溅射等现象,实现物质从源物质到薄膜的可控的原子转移过程。
物理气相沉积技术中最为基础的两种方法就是蒸发法和溅射法。
在薄膜沉积技术发展的最初阶段,由于蒸发法相对溅射法具有一些明显的优点,包括较高的沉积速度,相对较高的真空度以及由此导致的较高的薄膜质量等,因此蒸发法受到了相对较大程度的重视。
但另一方面,溅射法也具有自己的一些优势,包括在沉积多元合金薄膜时化学成分容易控制,沉积层对衬底的附着力较好等。
同时,现代技术对于合金薄膜材料的需求也促进了各种高速溅射方法以及高钝靶材,高钝气体制备技术的发展,这些都使得溅射法制备的薄膜质量得到了很大的改善。
如今,由于气相中各组分能够充分的均匀混合,制备的材料组分均匀,易于掺杂,制备温度低,适合大尺寸薄膜的制备,并且能够在形状不规则的衬底上生长薄膜等优点,不仅上述两种物理气相沉积方法已经大量应用于各个技术领域之中,而且为了充分利用这两种方法各自的优点,还开发出了许多介于上述两种方法之间的新的薄膜沉积技术。
【正文】一、实验原理真空镀膜是在真空室中进行的(一般气压低于1.3×10-2Pa),当需要蒸发的材料(金属或电介质)加热到一定温度时,材料中分子或原子的热振动能量可增大到足以克服表面的束缚能,于是大量分子或原子从液态或直接从固态(如SiO2、ZnS)汽化。
当蒸汽粒子遇到温度较低的工件表面时,就会在被镀工件表面沉积一层薄膜。
以下仅就源加热方式、真空度对膜层质量的影响及蒸发源位置对薄膜均匀性的影响等问题作简要说明。
(1)源加热器(a)(b)为电阻型源加热器,它们由高熔点的金属做成线圈状(称为丝源)或舟状(称为舟源)。
加热源上可承载被蒸发材料。
由于挂在丝源上的被蒸发物质(如铝丝)可形成向各个方面发射的蒸汽流,因此丝源可用为点源,而舟源则可近似围内发射的面源。
对于不同的被蒸材料,可选取由不同材料做成,形状各异的加热器。
其选取原则为:a.加热器所用材料有良好的热稳定性,其化学性质不活泼,在达到蒸发温度时,加热器材料本身的蒸汽压要足够低。
b.加热器材料的熔点要高于被蒸发物的蒸发温度,加热器要有足够大的热容量。
c.要求线圈装加热器所用材料热能与蒸发物有良好的浸润,有较大的表面张力。
d.被蒸发物与加热器材料的互溶性必须很低,不产生合金。
e.对于不易制成丝状,或被蒸发物与丝状加热器的表面张力较小时,可采用舟状加热器。
日前常用钨丝加热器蒸发铝,用钼舟加热器蒸发银、金、硫化锌、氟化镁等材料,与电阻器配合的关键部件是低压大电流变压器,对不同的蒸发材料及加热器可将电流分配塞置于相应位置,以保证获得合适的功率。
电阻源加热器具有简便、设备成本低等优点,但由于加热器与蒸发物在电阻加热器上的装载量不能太多,因此所蒸膜厚也将受到限制。
图1(c)是一种电子束蒸发源的示意图。
它是利用高电压加速并聚焦的电子束经磁偏转,在真空中直接打到蒸发源表面,使蒸发物表面的局部温度升高并溶化来实现真空沉积的。
电子束可使熔点高达3000℃以上的材料熔化。
电子束蒸发时,蒸发物中心局部熔融并为汽化时,其边缘部分仍处于固体状态,这样就可避免蒸发物与坩埚的反映,保证蒸发物不受沾污。
(2)物质的蒸发速度在一定的温度下,每种液体或固体物质都有特定的平衡蒸气压。
只有当环境中被蒸发物质的分压降低到它们的平衡蒸气压以下时,才可能有物质的净蒸发。
单位源物质表面上物质的净蒸发速率为(详细推导见参考文献2,P4):其中,Γ为单位物质表面的质量蒸发速度,M为分子或原子的相对原子质量,T 是气体的热力学温度,R 为气体常数,NA 为阿伏伽德罗(Avogadro)常数。
由于物质的平衡蒸气压随着温度的上升增加很快,因而对物质蒸发速度影响最大的因素是蒸发源的温度。
(3)真空度对膜层质量的影响。
真空镀膜对真空度的要求是出于以下两方面的考虑:A. 真空度足够高,可以使蒸汽分子以射线状从蒸发源向基体发射。
这样可以使蒸发材料的利用率及沉积速率大大提高。
在正常工作时要求真空室内气体分子的平均自由程比蒸发源到被镀基体的距离大得多。
真空室内残余气体分子的平均自由程可以由下式表示:其中,n 为单位体积内气本分子数,σ为气体分子的有效直径。
此式表明,气体分子平均自由程决定于单位体积内的分子数n,由于n 正比于气体压强P,因此λ与P 成反比,或者说,气体分子自由程与真空度成正比。
一般要求气体分子平均自由程是源到基体距离(h)的2~3倍,因此对于h =20cm的真空镀膜机,要求其真空度为帕至帕。
B. 如果没有足够高度的真空度,真空室内的残余气体分子可能是很可观的。
由空气动力学可知,当气压为1.3×帕时,每平方厘米基体表面,每秒钟内,可有5×个气体分子与其发生碰撞。
由于残余气体中包含各种气体成份,尤其是氧等气体分子容易被基体吸附后改变膜层的结构和成份,因此在真空镀膜时必须保持一足够高的真空度。
(4)蒸发源位置与薄膜的均匀性。
由理论分析可知(可参见参考文献2,P29-P34),当一个点源放在一个半径为r 的球心位置时,则在整个球面上得到的沉积层厚度是均匀的。
实际的蒸发源总有一定线度,不能看成理想的点源,因此球面上的淀积量不可能很均匀,线度越大,均匀性越差。
此外,基体也不可能恰好是半径为r的球面,它们常常是一些平面或有特定曲率半径的曲面,这也影响了镀层的均匀性。
为了使镀层有良好的均匀性,目前常用的方法是使载工件的平面绕图2 所示的oo'轴转动,把一小面源置于距中心为R 的位置上,这样可使均匀性得到改善。
更精良的设计是将工件盘做成既能自转(绕o'轴),又能公转(绕o 轴)的行星盘结构(如图3 所示),这种结构对膜层的均匀性是更为有利的。
二、实验内容动手操作前认真学习讲义及有关资料,熟悉镀膜机和有关仪器的结构及功能、操作程序与注意事项。
(1)准备基底:清洗载玻片,在洁净的载玻片上均匀涂上硅油。
(2)镀膜室的清理与准备。
先向钟罩内充气一段时间,然后升钟罩,装好基片、电极钨丝和铝丝,清理镀膜室(壁上的沉积物可以用丙酮清洗),降下钟罩。
(3)把需要蒸镀的材料银放入真空室中的钼舟中,并在真空室顶部装好基底,关好真空室。
(4)开机械泵,开启复合真空计中的电偶计(注意电离计保持关闭状态)(5)间隔的拉动三通阀,使得储气桶和真空室的真空度底于6.7pa。
(6)打开冷却水,加热油扩散泵越为40分钟。
(在保证4、5随即正常进行的前提下,4、6可以同时进行,以节省时间。
否则必须在5进行后才能进行6。
(7)将三通阀推至死点,开启高真空碟阀。
(8)当热偶计示数小于0.1pa时,开启电离计,转向高真空测量。
(9)注意电离计示数的变化,同时电离计转换测量档。
直到达到所需的压强为止(约为10-2~10-3pa)。
(10)开启版面上的“镀膜”逐渐转动“灯丝—镀膜调节”加大电流,给钼舟电,钼舟渐渐发红,舟中的蒸发物开始液化,逐渐蒸发完。
过几秒时间,关掉电流和镀膜开关。
(11)关掉电离计,关碟阀。
(12)停止油扩散泵加热,关复合真空计。
(13)冷却数分钟之后,对真空室冲气,打开真空室,取出被镀样品。
(14)关好真空室,对容器抽低真空3—5分钟。
(15)下观察薄膜。
(16)油扩散泵冷却至室温后,停止机械泵,切断水源和电源,全部工作完成。
三、实验图片以上七幅图片依次是从开始到镀膜结束的成果图片,开始时我们发现铝丝变红比较缓慢,而变红融化是先缩成小球再蒸发镀膜的,镀膜过程还是比较快速的。
四、实验问题思考(1)用2mg 的铝镀膜,求其点源正上方膜有多厚?在真空中气体分子的平均自由程为:L = 0.65 / p (cm),其中p 的单位是当p = 1.3×10-3Pa 时,L ≈500 cm 。
L>>基片到蒸发源的距离,分子作直线运动。
右图为蒸发源与任意接收面之间的几何关系。
设蒸发源为点蒸发蒸发物质到达任一方向面积元ds 质量为:ωπd m dm 4=蒸发物质到达任一方向面积元ds 质量为::ds rm dm 2cos 4ϕπ= 设蒸发物的密度为ρ,单位时间淀积在ds 上的膜厚为t ,则ds t dm ⋅⋅=ρ比较以上两式可得:2cos rm t πρϕ4= 对于平行平面ds ,θϕ=,则上式为2cos r m t πρθ4=由 可得 在点源的正上方区域(δ=0)时, 由于本实验未知h ,故此处仅估计厚度,m=2mg=0.002g ,3/7.2cm g =铝ρ,估计h=8cm得到t 0=1.2×10-8cm 。
五、实验反思本实验基本是在上学期真空的获得实验的基础上做的,由于上个学期我对真空实验掌握的不是很好,故在实验开始时对于如何获得低真空遇到了很大的问题,这告诫我们一定要认真掌握实验。
在此次实验镀膜中,开始镀膜,慢慢调大镀膜电流,发现真空室慢慢出现红光,而后观察到出现类似镜子的现象表明完成实验。
由于实验中镀膜电流并不准确,后面刻度几乎不可读,故未得出镀膜电流,据我们小组估计大概是60mA 左右开始镀膜。
通过本次实验,我们大致了解了实验中的各项操作,明白了各步实验操作的目的,对于真空镀膜的实验理论的理解也更加深刻了。
,cos r h =θ222h r +=δ2/322)(4h mh t +=δπρ204h t πρ=。