当前位置:文档之家› 发动机曲轴结构设计

发动机曲轴结构设计

发动机曲轴结构设计 Document number:PBGCG-0857-BTDO-0089-PTT1998曲轴的结构曲轴的作用是把活塞往复运动通过连杆转变为旋转运动,传给底盘的传动机构。

同时,驱动配气机构和其它辅助装置,如风扇、水泵、发电机等【18】。

曲轴一般由主轴颈,连杆轴颈、曲柄、平衡块、前端和后端等组成,如图所示。

一个主轴颈、一个连杆轴颈和一个曲柄组成了一个曲拐,直列式发动机曲轴的曲拐数目等于气缸数,而V型发动机曲轴的曲拐数等于气缸数的一半。

图主轴颈是曲轴的支承部分,通过主轴承支承在曲轴箱的主轴承座中。

主轴承的数目不仅与发动机气缸数目有关,还取决于曲轴的支承方式。

曲柄是主轴颈和连杆轴颈的连接部分,断面为椭圆形,为了平衡惯性力,曲柄处常设置平衡重。

平衡重用来平衡发动机不平衡的离心力矩及一部分往复惯性力,从而保证了曲轴旋转的平稳性【19】。

曲轴的连杆轴颈是曲轴与连杆的连接部分,曲柄与主轴颈的相连处用圆弧过渡,以减少应力集中。

直列发动机的连杆轴颈数目与气缸数相等而V型发动机的连杆轴颈数等于气缸数的一半。

曲轴前端装有正时齿轮,以驱动风扇和水泵的皮带轮以及起动爪等。

为了防止机油沿曲轴轴颈外漏,在曲轴前端装有一个甩油盘,在齿轮室盖上装有油封。

曲轴的后端用来安装飞轮,在后轴颈与飞轮凸缘之间制成档油凸缘与回油螺纹,以阻止机油向后窜漏。

曲轴的形状和曲拐相对位置取决于气缸数、气缸排列和发动机的发火顺序。

多缸发动机的发火顺序应使连续作功的两缸保持尽量远的距离,这样既可以减轻主轴承的载荷,又能避免可能发生的进气重叠现象。

此外作功间隔应力求均匀,也就是说发动机在完成一个工作循环的曲轴转角内,每个气缸都应发火作功一次,以保证发动机运转平稳。

曲轴的作用:它与连杆配合将作用在活塞上的气体压力变为旋转的动力,传给底盘的传动机构。

同时,驱动配气机构和其它辅助装置,如风扇、水泵、发电机等。

工作时,曲轴承受气体压力,惯性力及惯性力矩的作用,受力大而且受力复杂,并且承受交变负荷的冲击作用。

同时,曲轴又是高速旋转件,因此,要求曲轴具有足够的刚度和强度,具有良好的承受冲击载荷的能力,耐磨损且润滑良好【20】。

曲轴的疲劳损坏形式曲轴的工作情况十分复杂,它是在周期性变化的燃气作用力、往复运动和旋转运动惯性力及其他力矩作用下工作的,因而承受着扭转和弯曲的复杂应力。

曲轴箱主轴承的不同心度会影响到曲轴的受力状况,其次,由于曲轴弯曲与扭转振动而产生的附加应力,再加上曲轴形状复杂,结构变化急剧,产生了严重的应力集中。

最后曲轴主轴颈与曲柄销是在比压下进行高速转动,因而产生强烈的磨损。

因此柴油机在运转中发生曲轴裂纹和断裂事故不为鲜见,尤其是发电柴油机曲轴疲劳破坏较多。

依曲轴产生裂纹的交变应力的性质不同,主要有以下三种疲劳裂纹:弯曲疲劳裂纹、扭转疲劳裂纹和弯曲一扭转疲劳裂纹【21】,如图所示。

图 1-弯曲疲劳裂纹 2-扭转疲劳裂纹弯曲疲劳裂纹曲轴的弯曲疲劳裂纹一般发生在主轴颈或曲柄销颈与曲柄臂连接的过渡圆角处,或逐渐扩展成横断曲柄臂的裂纹,或形成垂直轴线的裂纹。

弯曲疲劳试验表明,过渡圆角处的最大应力出现在曲柄臂中心对称线下方。

应力沿曲轴长度方向的分布是在中间的和端部的曲柄有较大的弯曲应力峰值。

因此,曲轴弯曲疲劳裂纹常发生在曲轴的中间或两端的曲柄上。

曲轴弯曲疲劳破坏通常是在柴油机经过较长时间运转之后发生。

因为长时间运转后柴油机的各道主轴承磨损不均匀,使曲轴轴线弯曲变形,曲轴回转时产生过大的附加交变弯曲应力。

此外,曲轴的曲柄臂、曲柄箱或轴承支座(机座)等的刚性不足,柴油机短时间运转后,也会使曲轴产生弯曲疲劳破坏。

扭转疲劳裂纹曲轴在扭转力矩作用下产生交变的扭转应力,存在扭振时还会产生附加交变扭转应力,严重时会引起曲轴的扭转疲劳破坏。

扭转疲劳裂纹一般发生在曲轴上应力集中严重的油孔或过渡圆角处,并在轴颈上沿着与轴线成45°角的两个方向扩展。

这是因为轴颈的抗扭截面模数较曲柄臂的小,所以扭转疲劳裂纹多自过渡圆角向轴颈扩展,而很少向曲柄臂扩展。

但若同时存在较强的弯曲应力,则裂纹也可自圆角向曲柄臂扩展,造成曲柄臂弯曲断裂。

通常扭转疲劳裂纹发生在曲辆扭振节点附近的曲柄上。

发生扭砖疲劳裂纹的时间一般是在柴油机运转初期和曲轴的临界转速位于工作转速范围内时。

扭转疲劳断裂的断面与轴线相交成45°角,断面上的裂纹线近似螺旋线【22】【23】。

弯曲--扭转疲劳裂纹曲轴的疲劳破坏还可能是由于弯曲与扭转共同作用造成。

常常由于主轴承不均匀磨损造成曲轴上产生弯曲疲劳裂纹,继而在弯曲与扭转的共同作用下使裂纹扩展、断裂,最后断裂面与轴线成45°角。

断面上自疲劳源起约2/3的面积为贝纹区,呈暗褐色;剩余l/3的面积为最后断裂区,断面凹凸不平,晶粒明亮。

圆形波纹状纹理是弯曲疲劳造成的,放射状纹理是扭转疲劳造成的,两种纹理交织成蛛网状。

弯曲一扭转疲劳裂纹有时也呈以弯曲疲劳为主或以扭转疲劳为主的破坏形式。

因此,在具体情况下,应根据断面上的纹理、裂纹方向和最后断裂区进行分析判断【24】。

生产中,曲轴的弯曲疲劳破坏远远多于钮转疲劳破坏。

其主要原因是由于曲轴弯曲应力集中系数大于扭转应力集中系数,曲轴的弯曲应力难于精确计算和控制。

柴油机运转中,曲轴的各道主轴承磨损是很难掌握和计算的,由它所引起的曲轴变形和附加弯曲应力也就难于讨算和控制了。

相反,曲轴的扭转应力可以通过计算准确掌握,并可采取有效的减振措施予以平衡,只要避免柴油机在临界转速运转和扭转应力过载,曲轴的扭转疲劳破坏就会得以控制【25】。

曲轴的设计要求根据上述曲轴的损坏形式及其原因,且为避免这些损坏,曲轴在设计过程中应尽量满足以下的要求:1.具有足够的疲劳强度,以保证曲轴工作可靠。

尽量减小应力集中,加强薄弱环节;2.具有足够的弯曲和扭转刚度,使曲轴变形不致过大,以免恶化活塞连杆组及轴承的工作条件;3.轴颈就有良好的耐磨性,保证曲轴和轴承有足够的寿命;4.曲柄的排列应合理,以保证柴油机工作均匀,曲轴平衡性良好,以减少振动和主轴承最大负荷;5.材料选择适当,制造方便【26】。

曲轴的结构型式曲轴的支承方式一般有两种,一种是全支承曲轴,其曲轴的主轴颈数比气缸数目多一个,即每一个连杆轴颈两边都有一个主轴颈。

这种支承,曲轴的强度和刚度都比较好,并且减轻了主轴承载荷,减小了磨损。

柴油机和大部分汽油机多采用这种形式。

另一种是非全支承曲轴。

其曲轴的主轴颈数比气缸数目少或与气缸数目相等。

这种支承方式叫非全支承曲轴,虽然这种支承的主轴承载荷较大,但缩短了曲轴的总长度,使发动机的总体长度有所减小。

有些汽油机,承受载荷较小可以采用这种曲轴型式【27】。

鉴于本课题所设计的1015柴油机为四缸,故而动机的总体长度较小。

且其常用于重型载重车,曲轴的强度及刚度要求都较高,因此设计采用全支承曲轴。

曲轴从结构上可分为整体式和组合式。

整体式曲轴的毛胚由整根钢料锻造或铸造方法浇铸出来,具有结构简单、加工方便、重量轻、工作可靠、刚度和强度较高等优点。

组合式曲轴是分段制造的,铸造时容易保证质量,降低废品率【28】;锻造时无需较大的锻压设备,制造方便,热处理和机械加工业较方便,并可缩短生产周期。

当生产后使用中某个曲柄发现有缺陷时,可以局部更换而不必报废整个曲轴。

一般的说,在选择曲轴结构时,只要生产设备允许应该尽可能采用整体式曲轴。

在大型柴油机上由于曲轴尺寸与重量都较大,整体制造极为困难是,往往采用组合式曲轴。

对于本课题得设计,曲轴的尺寸较小及重量较轻,所以选择整体式的。

曲轴的材料曲轴的常用材料根据其毛坯制造方法的不同可分为锻造曲轴材料和铸造曲轴材料两大类。

锻造游客分为自由锻、模锻和镦锻。

自由锻适用于较小设备生产大型曲轴,但效率太低,加工余量也大。

模锻需要一套较贵的锻模设备和较大的锻压设备,生产效率价高。

镦锻可节约大量金属材料和机械加工工时,且加工出的曲轴能充分发挥材料的强度。

锻造曲轴常用材料为普通碳素钢及合金钢。

铸造曲轴常用材料为球墨铸QT60-2、可断铸铁KTZ70-2、合金铸铁及铸钢ZG35等。

在强化程度要求不高的内燃机中,一般选用普通碳素钢,碳素钢的韧性比合金钢高,可以降低扭转振动振幅。

合金钢多用于强化要求高的柴油机曲轴,其疲劳强度高但对应力集中敏感性大,因而对机械加工要求也高。

球墨铸铁价格低廉,制造方便,对应力集中不敏感,并可以通过合理的造型降低应力的集中,还可通过加入合金元素、热处理、表面强化等方法提升其性能。

因此对于要求高的强度、塑性、韧性、耐磨性、耐严重的热和机械冲击、耐高温或低温、耐腐蚀以及尺寸稳定性的曲轴较适用【29】。

但球墨铸铁延伸率、冲击韧性、弹性模数及疲劳强度较低,在使用其作为曲轴材料时,应该确保轴颈和曲柄臂厚度较粗。

曲轴的材料应具有较高的疲劳强度、必要的硬度以及较好的淬透性。

在选取材料是不仅要考虑到机械性能,同时也要考虑工艺性、资源性和经济性。

在选择材料时,需要根据内燃机类型、用途及生产条件,确定曲轴毛坯的制造方法。

并参考同类近似机型所用材料,根据曲轴受力情况和使用习惯,凭经验选取。

根据上述各种毛坯制造方法及材料特点,并结合1015柴油机结构、实际受力状况及用途,本设计曲轴毛坯采用铸造方法,曲轴材料选择球墨铸铁QT60-2。

曲轴的主要部件设计主轴颈和曲柄销主轴颈和曲柄销是曲轴最重要的两对摩擦副,他们的设计直接影响了内燃机的工作可靠性、外形尺寸及维修。

轴颈的尺寸和结构与曲轴的强度、刚度及润滑条件有密切的关系。

曲轴的直径越大,曲轴的刚度也越大,但轴颈直径过大会引起表面圆周速度增大,导致摩擦损失和机油温度的增高。

曲柄销直径的增大会引起旋转离心力及转动惯量的剧烈增加,并使连杆大头的尺寸增大,这不利于连杆通过气缸取出,因此在保证轴承比压不变的情况下,采用较大的轴颈直径1D ,减小主轴颈长度1L ,这有利于缩短内燃机的长度或者加大曲柄臂的厚度采用短而粗的主轴颈可提高曲轴扭振的自振频率,减小在工作转速范围内产生共振的可能性。

一般情况下曲柄销直径2D 总是小于主轴颈直径1D 【30】。

曲柄臂曲柄臂在曲柄平面内的抗弯曲刚度和强度都较差,往往因受交变弯曲应力而引起断裂。

因此曲柄臂是整体曲轴上最薄弱的环节,设计时应注意适当的宽度和厚度,并选择合理的形状,以改善应力的分布状况。

增大曲柄臂的厚度和宽度都可以增大曲柄臂的强度,而从提高曲柄臂的抗弯强度来说,增加厚度比增加宽度效果要好得多【31】。

曲轴圆角曲轴主轴颈和曲柄臂连接的圆角称为主轴颈圆角,曲柄销和曲柄臂连接的圆角称为曲柄销圆角。

这些过渡圆角能够减小应力集中,提高疲劳强度,其半径的增大与其表面光洁程度的提高,是增加曲轴疲劳强度的有效措施【32】。

曲轴圆角半径r应足够大,但是圆角半径过小会使应力集中严,而圆角半径的增大会使轴颈承压的有效长度减小,因而也会减小轴承承压面积。

相关主题