当前位置:文档之家› 高中生物竞赛培优教程光合作用呼吸作用和气体交换

高中生物竞赛培优教程光合作用呼吸作用和气体交换

高中生物竞赛培优教程:光合作用、呼吸作用和气体交换第二章植物解剖和生理【考点解读】本章研究植物形态构造和生理活动规律,包括植物组织和器官的结构和功能、光合作用和呼吸作用、水分和矿质代谢、生长和发育、生殖五大部分。

根据IB0考纲细目和近年来试题的要求,以下从知识条目和能力要求两方面定出具体目标。

第二节光合作用、呼吸作用和气体交换一片完全叶包括叶片、叶柄和托叶三部分。

缺少其中一部分或两部分,称为不完全叶,如莴苣的叶缺叶柄和托叶,为无柄叶。

叶在茎上的排列方式称为叶序。

叶序有三种:互生(每节上只生一叶)、对生(每节上生两叶)和轮生(每节上生三叶或三叶以上)。

1.双子叶植物叶的结构叶片由表皮、叶肉和叶脉组成(图1-2-5)。

(1)表皮无色透明,一般由排列紧密的一层生活细胞组成。

在表皮细胞之间分布着许多气孔。

双子叶植物的气孔由两个半月形的保卫细胞围成,保卫细胞含有叶绿体,细胞壁在靠近气孔的一面较厚,其他面较薄。

当保卫细胞吸水膨大时,向表皮细胞的一方弯曲,气孔张开;保卫细胞失水时,气孔关闭。

气孔的开闭能调节气体交换与蒸腾作用。

一般草本双子叶植物的气孔,下表皮多于上表皮(如棉、马铃薯);木本双子叶植物的气孔都分布于下表皮(如苹果、夹竹桃、茶);浮水叶的气孔分布在上表皮(如莲、菱);沉水叶一般无气孔(如眼子菜)。

此外,植物体上部叶的气孔较下部叶的多,同一叶片近叶尖和中脉部分的气孔较叶基和叶缘的多。

(2)叶肉大多数双子叶植物叶由于背腹两面(远轴面或下面为背面,近轴面或上面为腹面)受光情况不同,叶肉具有栅栏组织和海绵组织之分,这种叶称为两面叶或异面叶;叶肉中无这两种组织的分化,或虽有分化,栅栏组织却分布在叶的两面,称为等面叶(如垂柳、桉),(3)叶脉主脉和大侧脉的维管束周围有机械组织,木质部位于近叶腹面,韧皮部位于近叶背面(图1-2-6),中间有短时期活动的形成层。

叶脉越分越细,最后形成层和机械组织2.禾本科植物叶的结构禾本科植物的叶由叶片和叶鞘两部分组成。

叶鞘包裹着茎秆,叶鞘和叶片相接处,有一片向上突起的膜状结构,称为叶舌。

叶舌能使叶片向外弯曲,更多地接受阳光,并可防止水分、害虫进入叶鞘中。

有些禾本科植物在叶鞘上端的两侧与叶片相接处,有突出物,称为叶耳。

叶舌和叶耳的有无、形状、大小、色泽可用作鉴定物种的依据。

如大麦、小麦、水稻有叶耳、叶舌,稗草无叶耳、叶舌。

禾本科植物的叶片也有表皮、叶肉和叶脉三种基本结构。

表皮细胞的外壁不仅角质化,还充满硅质。

相邻两叶脉之间的上表皮还有特殊的大型薄壁细胞,称为泡状细胞(又称运动细胞,图1-2-7),泡状细胞具有大液泡,与叶片的展开和卷曲有关,可控制水分的蒸腾。

上下表皮都有气孔,气孔的保卫细胞呈哑铃型,在保卫细胞外侧还有副卫细胞,如图1-2-8所示。

叶肉没有栅栏组织与海绵组织的分化的叶,为等面叶。

3.裸子植物针叶的结构针叶表皮细胞壁厚,角质层发达,气孔下陷;叶肉细胞壁内褶,增大了叶绿体的分布面,扩大了光合面积;有明显的内皮层;内皮层以内是转输组织和一个或两个维管束。

转输组织由管胞和薄壁细胞组成,是松柏类植物的特征,其作用是在叶肉与维管束之间进行横向运输(图1-2-9)。

二、光合作用1.光合色素叶绿体化学成分的显著特点是含有色素。

色素可分为三类:叶绿素、类胡萝卜素和藻胆素。

藻胆素仅存在于一些藻类中。

叶绿素中主要是叶绿素a和b。

叶绿素b只存在于高等植物和绿藻中,其他藻类大多没有叶绿素b。

各种色素都能吸收日光,少数叶绿素a还能将光能转换为电能,称为作用中心色素;绝大多数色素(包括大部分叶绿素a)只有收集光能的作用,称为聚光色素,它们吸收的光能只有传到作用中心色素后才能起光合作用。

叶绿素溶液在透射光下呈绿色,反射光下呈红色,这种现象称为荧光现象。

叶绿素的生物合成是以谷氨酸或α-酮戊二酸为原料,在光照条件下还原而成。

光照、温度、矿质元素等会影响叶绿素的形成。

2.光合作用的机理光合作用过程包括一系列的光化学步骤和物质的转变,大致可分为下列三大步骤:光能的吸收、传递和转换过程(通过原初反应完成);光能转变为活跃的化学能过程(通过电子传递和光合磷酸化完成);活跃的化学能转变为稳定的化学能过程(通过碳同化完成)。

前两个步骤基本属于光反应,第三个步骤属于暗反应。

高等植物的光合碳同化过程有C3、C4和CAM 三条途径。

电子传递链电子传递链组分集光复合体由大约200个叶绿素分子和一些肽链构成。

大部分色素分子起捕获光能的作用,并将光能以诱导共振方式传递到反应中心色素。

因此这些色素被称为天线色素。

叶绿体中全部叶绿素b和大部分叶绿素a都是天线色素。

另外类胡萝卜素和叶黄素分子也起捕获光能的作用,叫做辅助色素。

光系统Ⅰ(PSI)能被波长700nm的光激发,又称P700。

包含多条肽链,位于基粒与基质接触区的基质类囊体膜中。

由集光复合体Ⅰ 和作用中心构成。

结合100个左右叶绿素分子、除了几个特殊的叶绿素为中心色素外,其它叶绿素都是天线色素。

三种电子载体分别为A0(一个chla分子)、A1(为维生素K1)及3个不同的4Fe-4S。

光系统Ⅱ(PSⅡ)吸收高峰为波长680nm处,又称P680。

至少包括12条多肽链。

位于基粒与基质非接触区域的类囊体膜上。

包括一个集光复合体(light-hawesting comnplex Ⅱ,LHC Ⅱ)、一个反应中心和一个含锰原子的放氧的复合体(oxygen evolving complex)。

D1和D2为两条核心肽链,结合中心色素P680、去镁叶绿素(pheophytin)及质体醌(plastoquinone)。

细胞色素b6/f复合体可能以二聚体形式存在,每个单体含有四个不同的亚基。

细胞色素b6(b563)、细胞色素f、铁硫蛋白、以及亚基Ⅳ(被认为是质体醌的结合蛋白)。

非循环电子传递链非循环电子传递链过程大致如下:电子从光系统2出发。

光系统2→初级接受者(Primary acceptor)→质粒醌(Pq)→细胞色素复合体(Cytochrome Complex)→质粒蓝素(含铜蛋白质,Pc)→光系统1→初级接受者→铁氧化还原蛋白(Fd)→NADP+还原酶(NADP+ reductase)非循环电子传递链从光系统2出发,会裂解水,释出氧气,生产ATP与NADPH。

循环电子传递链循环电子传递链的过程如下:电子从光系统1出发。

光系统1→初级接受者(Primary acceptor)→铁氧化还原蛋白(Fd)→细胞色素复合体(Cytochrome Complex)→质粒蓝素(含铜蛋白质)(Pc)→光系统1循环电子传递链不会产生氧气,因为电子来源并非裂解水。

最后会生产出ATP。

非循环电子传递链中,细胞色素复合体会将氢离子打到类囊体(Thylakoid)里面。

高浓度的氢离子会顺着高浓度往低浓度的地方流这个趋势,像类囊体外扩散。

但是类囊体膜是双层磷脂膜(Phospholipid dilayer),对于氢离子移动的阻隔很大,它只能通过一种叫做ATP合成酶(ATP Synthase)的通道往外走。

途中正似水坝里的水一般,释放它的位能。

经过ATP合成酶时会提供能量、改变它的形状,使得ATP合成酶将ADP和磷酸合成ATP。

NADPH的合成没有如此戏剧化,就是把送来的电子与原本存在于基质内的氢离子与NADP+合成而已。

值得注意的是,光合作用中消耗的ATP比NADPH要多得多,因此当ATP不足时,相对来说会造成NADPH的累积,会刺激循环式电子流之进行。

光合磷酸化P680接受能量后,由基态变为激发态(P680*),然后将电子传递给去镁叶绿素(原初电子受体),P680*带正电荷,从原初电子供体Z(反应中心D1蛋白上的一个酪氨酸侧链)得到电子而还原;Z+再从放氧复合体上获取电子;氧化态的放氧复合体从水中获取电子,使水光解。

2H2O→O2+ 2(2H+)+ 4e-在另一个方向上去镁叶绿素将电子传给D2上结合的QA,QA又迅速将电子传给D1上的QB,还原型的质体醌从光系统Ⅱ复合体上游离下来,另一个氧化态的质体醌占据其位置形成新的QB。

质体醌将电子传给细胞色素b6/f复合体,同时将质子由基质转移到类囊体腔。

电子接着传递给位于类囊体腔一侧的含铜蛋白质体蓝素(plastocyanin,PC)中的Cu2+,再将电子传递到光系统Ⅱ。

P700被光能激发后释放出来的高能电子沿着A0→ A1 →4Fe-4S的方向依次传递,由类囊体腔一侧传向类囊体基质一侧的铁氧还蛋白(ferredoxin,FD)。

最后在铁氧还蛋白-NADP还原酶的作用下,将电子传给NADP+,形成NADPH。

失去电子的P700从PC处获取电子而还原。

以上电子呈Z形传递的过程称为非循环式光合磷酸化,当植物在缺乏NADP+时,电子在光系统内Ⅰ流动,只合成ATP,不产生NADPH,称为循环式光合磷酸化。

一对电子从P680经P700传至NADP+,在类囊体腔中增加4个H+,2个来源于H2O 光解,2个由PQ从基质转移而来,在基质外一个H+又被用于还原NADP+,所以类囊体腔内有较高的H+(pH≈5,基质pH≈8),形成质子动力势,H+经ATP合酶,渗入基质、推动ADP和Pi结合形成ATP。

ATP合酶,即CF1-F0偶联因子,结构类似于线粒体ATP合酶。

CF1同样由5种亚基组成α3β3γδε的结构。

CF0嵌在膜中,由4种亚基构成,是质子通过类囊体膜的通道。

(1)C3途径C3途径是卡尔文等提出的C02同化途径,故称为卡尔文循环。

这个循环中的C02受体是核酮糖-1,5—二磷酸(RuBP),在RuBP羧化酶催化下,C02固定后形成的最初产物3—磷酸甘油酸(PGA)是一种三碳化合物,故该途径称为C3途径(图l—2-10)。

C3途径是所有植物光合作用碳同化的基本途径。

只有C3途径的植物,称为C3植物。

(2)C4途径一些起源于热带的植物,如甘蔗、玉米和高梁等,它们固定C02的最初产物不是磷酸甘油酸,而是草酰乙酸(OAA)等四碳二羧酸,故命名为C4途径。

通过C4途径固定C02的植物称为C4植物。

C4途径的C02受体是叶肉细胞细胞质中的磷酸烯醇式丙酮酸(PEP),在PEP羧化酶催化下,固定C02生成草酰乙酸,草酰乙酸在脱氢酶的作用下被还原为苹果酸(有些品种形成天冬氨酸)。

苹果酸离开叶肉细胞,进入维管束鞘细胞,脱羧放出C02,为RuBP固定进入卡尔文循环;脱羧后形成的丙酮酸再回到叶肉细胞,转变为PEP,继续固定C02(图1-2-11)。

C4植物实际上是在C3途径的基础上,多一个固定C02途径。

(3)CAM(景天科酸代谢)景天科植物如仙人掌、落地生根等的叶子,气孔晚上开放,吸进C02,与PEP结合,形成草酰乙酸,再还原为苹果酸,积累于液泡中。

白天气孔关闭,液泡中的苹果酸便运到细胞质,脱羧放出C02,参与卡尔文循环,形成淀粉等(图l-2-12)。

相关主题