蛋白质结构及性质论文——动科一班黄细旺(1207010127)&冯志(1207010126)摘要:蛋白质结构及其理化性质关键词:蛋白质、结构、理化性质前言:蛋白质分子是由许多氨基酸通过肽键相连形成的生物大分子。
人体内具有生理功能的蛋白质都是有序结构,每种蛋白质都有其一定的氨基酸百分组成及氨基酸排列顺序,以及肽链空间的特定排布位置。
因此由氨基酸排列顺序及肽链的空间排布等所构成的蛋白质分子结构,才真正体现蛋白质的个性,是每种蛋白质具有独特生理功能的结构基础。
蛋白质结构蛋白质分子结构分成一级、二级、三级、四级结构四个层次,后三者统称为高级结构或空间构象。
并非所有的蛋白质都有四级结构,由一条肽链形成的蛋白质只有一级、二级和三级结构,由二条或二条以上多肽链形成的蛋白质才可能有四级结构。
1.蛋白质的一级结构蛋白质分子中氨基酸的排列顺序称为蛋白质的一级结构。
一级结构的主要化学键是肽键,有些蛋白质还包含二硫键,它是由两个半胱氨酸巯基脱氢氧化而成。
2.蛋白质的二级结构蛋白质的二级是指蛋白质分子中某一段肽链的局部空间结构,也就是该段肪酸主链骨架原子的相对空间位置,并不涉及氨基酸残基侧链构象。
(一)肽单元20世纪30年代末L.Panling和R.B.Cory应用X线衍射技术研究氨基酸和寡肽的晶体结构其目的是要获得一组标准键长和键角以推导肽的构象最终提出了肽单元概念。
他们发现参与肽健的6个原子位于同一平面Cα1和Cα2在平面上所处的位置为反构型,此同一平面上的6个原子构成了所谓的肽单元其中肽键(C-N)的键长为0132nm.介于C-N的单健长(0149nm)和双键长(0127nm)之问,所以有一定程度双键性能,不能自由旋转。
而Cα分别与N和羰基碳相连的键都是典型的单键可以自由旋转。
(二)α-螺旋Paulαing和Core根据实验数据提出了两种肽链局部主链原子空间构象的分子模型,称为α-螺旋和β-折叠,它们是蛋白质二级结构的主要形式,在α-螺旋结构中多肽键的主链围绕中心轴是有规律的螺旋式上升,螺旋的走向为顺时钟方向即右手螺旋,其氨基酸恻键伸向螺旋外侧。
每36个氨基酸残基螺旋上升一圈,螺距为0.54nm。
a一螺旋的每个肽键N-H和第四个的羧基氧形成氨键,氢键的方向与螺旋长轴基本平行。
肽链中的全部肽键都可形成氢键以稳固α-螺旋结构。
肌红蛋白和血红蛋白分子中有许多肽链段落呈a一螺旋结构,毛发的角蛋白、肌肉的肌球蛋白以及血凝块中的纤维蛋白它们的多肽链几乎全长都卷曲成α-螺旋,数条α-螺旋状的多肽链尚可缠绕起来形成缆索。
从而增强了其机械强度。
(三)β-折叠β-折叠与α螺旋的形状截然不同,呈折纸状。
在β折叠结构中,多肽链充分伸展,每个肽单元以Ca为旋转点依次折叠成锯齿状结构,氨基酸残基侧链交替位于锯齿状结构的上下方。
所形成的锯齿状结构一般比较短,只含5-8个氨基酸残基但两条以上肽锻或一条肽链内的若干肽段的锯齿状结构可平行排列,两条肽链走向可相同也可相反。
通过肽链间的肽键羰基氧和亚氨基氢形成肽键从而稳固β-折叠结构。
蚕丝蛋白几乎都是β-折叠结构,许多蛋白质既有α-螺旋又有β-折叠。
(四)β-转角和无规卷曲除α-螺旋和β一折叠外蛋白质二级结构还包括β-转角和无规卷曲β-转角常发生于肽链进行180°回折时的转角上。
β-转角通常有4个氨基酸残基组成,其第一个残基的羰基氧(O)与第四个残基的氨基氢(H)可形成氢键.β-转角的结构较特殊,第二个残基常为脯氨酸,其他常见残基有甘氨酸、天冬氨酸、天冬酰氨和色氨酸。
无规卷曲用来阐述没有确定规律性的那部分肽链结构。
(五)模体在许多蛋白质分子中,可发现二个或三个具有二级结构的肽段,在空间上相互接近,形成一个特殊的空间构象,被称为模体(motif)。
(六)氨基酸残基的侧链对二级结构的形成的影响蛋白质二级结构是以一级结构为基础的。
一段肽链其氨基酸残基的侧链适合形成a-螺旋或β-折叠它就会出现相应的二级结构。
例如一段肽链有多个谷氨酸或天冬氨酸残基相邻,则在pH=7时,这些残基的游离羧基都带负电荷,彼此相斥妨碍a-螺旋的形成。
同样,多个碱性氨基酸残基在一肽段内由于正由荷相斥也妨碍α-螺旋的形成。
此外天冬氨酸、亮氨酸的侧链很大也会影响。
α-螺旋形成。
脯氨酸的N原子在刚性的五元坏中,其形成的肽健N原子上没有H,所以不能形成氢键,结果肽链走向转折,不形成α-螺旋。
形成β-折叠的肽段要求氨基酸残基的侧链较小,才能容许两条胶段彼此靠近。
3.蛋白质的三级结构(一)三级结构蛋白质的三级结构是指整条肽级中全部氨基酸残基的相对空间位置也就是整条肽键所有原子在三维空间的排布位置。
肌红蛋白是由153个氨基酸残基构成的单个肽链的蛋白质含有1个血红素辅基。
图2-3显示肌红蛋白的三级结构。
它有A至H 8个螺旋区,两个螺旋区之间有一段无规卷曲,脯氨酸位于转角处。
由于侧链R基团的相互作用,多肽链缠绕,形成一个球状分子,球表面主要有亲水侧链疏水侧链则位于分子内部。
蛋白质三级结构的形成和稳定主要靠次级键——疏水作用,离子键、氢键和Van der Waals力等。
(二)结构域各行其功能,称为结构域。
如纤连蛋白,它由二条多肽链通过近C端的两个二硫键相连而成,含有6个结构域,各个结构域分别执行一种功能,有可与细胞、胶原、DNA和肝素等结合的结构域。
(三)分子伴侣蛋白质空间构象的正确形成除一级结构为决定因素外还需要一类称为分子伴侣的蛋白质参与。
蛋白质在合成时。
还未折叠的肽段有许多蔬水基团暴露在外,具有分子内或分子间聚集的倾向使蛋白质不能形成正确空间构象。
分子伴侣可逆地与未折叠肽段的蔬水部分结合随后松开,如此重复进行可防止错误的聚集发生,使肽健正确折叠。
分子伴侣也可与错误聚集的协段结合,使之解聚后再诱导其正确折叠。
此外蛋白质分子中特定位置的两个半胱氨酸可形成二硫键,这是蛋白质形成正确空间构象和发挥功能的必要条件,如胰岛素分子中有3个特定连接的二硫键。
如二硫键发生错配,蛋白质的空间构象和功能都会受到影响,两分子伴侣对蛋白质分子中二硫键正确形成起到重要作用。
4.蛋白质的四级结构对蛋白质分子的二、三级结构而言,只涉及由一条多肽卷曲而成的蛋白质。
在体内有许多蛋白质分子含有二条或多条多肽链才能全面地执行功能。
每一条多肽都有其完整的三级结构,称为蛋白质的亚基。
蛋白质分子中各个亚基的空间排布及亚基接触部位的布局和相互作用,称为蛋白质的四级结构。
在四级结构中,各亚基的结合力主要是疏水作用,氢键和离子键也参与维持四级结构。
蛋白质的性质:一、蛋白质的胶体性质蛋白质分子量颇大,介于一万到百万之间,故其分子的大小已达到胶粒1~100nm范围之内。
球状蛋白质的表面多亲水基团,具有强烈地吸引水分子作用,使蛋白质分子表面常为多层水分子所包围,称水化膜,从而阻止蛋白质颗粒的相互聚集。
与低分子物质比较,蛋白质分子扩散速度慢,不易透过半透膜,粘度大,在分离提纯蛋白质过程中,我们可利用蛋白质的这一性质,将混有小分子杂质的蛋白质溶液放于半透膜制成的囊内,置于流动水或适宜的缓冲液中,小分子杂质皆易从囊中透出,保留了比较纯化的囊内蛋白质,这种方法称为透析(dialysis)。
蛋白质大分子溶液在一定溶剂中超速离心时可发生沉降。
沉降速度与向心加速度之比值即为蛋白质的沉降系数S。
校正溶剂为水,温度20℃时的沉降系数S20·w可按下式计算:式中X为沉降界面至转轴中心的距离,W为转子角速度,W2X为向心加速度,dX/dt为沉降速度。
单位用S,即Svedberg单位,为1×1013秒,分子愈大,沉降系数愈高,故可根据沉降系数来分离和检定蛋白质。
二、蛋白质的两性电离和等电点蛋白质是由氨基酸组成的,其分子中除两端的游离氨基和羧基外,侧链中尚有一些解离基,如谷氨酸、天门冬氨酸残基中的γ和β-羧基,赖氨酸残基中的ε-氨基,精氨酸残基的胍基和组氨酸的咪唑基。
作为带电颗粒它可以在电场中移动,移动方向取决于蛋白质分子所带的电荷。
蛋白质颗粒在溶液中所带的电荷,既取决于其分子组成中碱性和酸性氨基酸的含量,又受所处溶液的pH影响。
当蛋白质溶液处于某一pH时,蛋白质游离成正、负离子的趋势相等,即成为兼性离子(zwitterion,净电荷为O),此时溶液的pH值称为蛋白质的等电点(isoelectric point,简写pI)。
处于等电点的蛋白质颗粒,在电场中并不移动。
蛋白质溶液的pH 大于等电点,该蛋白质颗粒带负电荷,反之则带正电荷。
各种蛋白质分子由于所含的碱性氨基酸和酸性氨基酸的数目不同,因而有各自的等电点。
凡碱性氨基酸含量较多的蛋白质,等电点就偏碱性,如组蛋白、精蛋白等。
反之,凡酸性氨基酸含量较多的蛋白质,等电点就偏酸性,人体体液中许多蛋白质的等电点在pH5.0左右,所以在体液中以负离子形式存在。
三、蛋白质的变性天然蛋白质的严密结构在某些物理或化学因素作用下,其特定的空间结构被破坏,从而导致理化性质改变和生物学活性的丧失,如酶失去催化活力,激素丧失活性称之为蛋白质的变性作用(denaturation)。
变性蛋白质只有空间构象的破坏,一般认为蛋白质变性本质是次级键,二硫键的破坏,并不涉及一级结构的变化。
变性蛋白质和天然蛋白质最明显的区别是溶解度降低,同时蛋白质的粘度增加,结晶性破坏,生物学活性丧失,易被蛋白酶分解。
引起蛋白质变性的原因可分为物理和化学因素两类。
物理因素可以是加热、加压、脱水、搅拌、振荡、紫外线照射、超声波的作用等;化学因素有强酸、强碱、尿素、重金属盐、十二烷基磺酸钠(SDS)等。
在临床医学上,变性因素常被应用于消毒及灭菌。
反之,注意防止蛋白质变性就能有效地保存蛋白质制剂。
变性并非是不可逆的变化,当变性程度较轻时,如去除变性因素,有的蛋白质仍能恢复或部分恢复其原来的构象及功能,变性的可逆变化称为复性。
例如,前述的核糖核酸酶中四对二硫键及其氢键。
在β巯基乙醇和8M尿素作用下,发生变性,失去生物学活性,变性后如经过透析去除尿素,β巯基乙醇,并设法使疏基氧化成二硫键,酶蛋白又可恢复其原来的构象,生物学活性也几乎全部恢复,此称变性核糖核酸酶的复性。
许多蛋白质变性时被破坏严重,不能恢复,称为不可逆性变性。
四、蛋白质的沉淀蛋白质分子凝聚从溶液中析出的现象称为蛋白质沉淀(precipitation),变性蛋白质一般易于沉淀,但也可不变性而使蛋白质沉淀,在一定条件下,变性的蛋白质也可不发生沉淀。
蛋白质所形成的亲水胶体颗粒具有两种稳定因素,即颗粒表面的水化层和电荷。
若无外加条件,不致互相凝集。
然而除掉这两个稳定因素(如调节溶液pH至等电点和加入脱水剂)蛋白质便容易凝集析出。
从图1-0可以看出,如将蛋白质溶液pH调节到等电点,蛋白质分子呈等电状态,虽然分子间同性电荷相互排斥作用消失了。