当前位置:
文档之家› 小波变换原理与应用 ppt课件
小波变换原理与应用 ppt课件
12
2.2.1 连续小波变换
如果函数 x满足以下容许性条件:
2
C d
则称 x为一容许性小波,并定义如下的积分变
换:
W fa ,b a 1 2fx xa b d,fx x L 2R 以上积分变换为 f x以 x为母小波的积分连
续小波变换,a为尺度因子,表示与频率相关的伸缩,
b为时间平移因子。
2 -1/2
2
1/
2
c
os
2
v 3 2
1
0
2 3
2 4
3
3
4 3
(3)其他常用小波
① Daubechies(dbN)小波系 ② Biorthogonal(biorNr.Nd)小波系 ③ Symlets(symN)小波系 ④ Morlet(morl)小波 ⑤ Coiflet(CoifN)小波系
1 0 x 1/ 2
H 1 1/ 2 x 1
0 其他
(2)Meyer函数
Meyer小波函数 和尺度函数都是在频域中进
行定义的,是具有紧支撑的正交小波。
2
e -1/2 j/2
sin2v23
1
2 4
3
3
2-1/2ej/2
cos2v23
1
4 8
3
3
0 [2,8]
33
其中,va为构造函数Meyer的辅助函数,且有:
如果我们有一个无限长的窗口,然后做傅里叶变换, 会得到完美的频率分辨率,但是结果中不包含时间 信息。更进一步为了获得信号的平稳性,我们需要 一个宽度足够短的窗函数,窗口越短,时间分辨率 越高,信号的稳定性越高,但是频率分辨率却越来 越低。
窄窗=高时间分辨率,低频率分辨率 宽窗=高频率分辨率,低时间分辨率
13
2.2.2离散小波变换
W fa ,b f t,a ,b t
将a,b离散化,令 a2j,b2jk,j,k Z ,可以得 到离散小波变换:
D fW j ,k ft ,j,k t
其中:
j
j,kt222jtk, j,kZ
2.3 几种常用小波
(1) Haar小波 A.Haar于1990年提出一种正交函数系,定义如下:
1.2STFT
STFT: ST X ()(F t,f)T [x (t)• (t t')• ]e j2 fd t t
t
STFT只不过是对乘了一个窗函数的信号做傅里叶变换, 以此得到在某段时间内的频率信息。 根据海森堡测不准原理,在STFT中由于窗口长度有限, 它仅仅覆盖了信号的一部分,因此导致频率分辨率较 差,即我们不能确切的知道信号中那些频率分量存在, 只知道那些频段的分量存在。
co 2 fs)t(jsi2 n f)(t
即信号是由一些不同频率的正弦项叠加起来的, 如果信号中频率为f的分量幅度较大,那么这个分量就 和正弦项重叠,他们的即就比较大,这表明信号有一 个频率为f的主要分量。
信号一 cos(2*pi*10*t)+cos(2*pi*25*t)+cos(2*pi*100*t)+ cos(2*pi*50*t)
11
小波的发展历史——工程到数学
1988: Inrid Daubechies作为小波的创始人,揭示了小 波变换和滤波器组(filter banks)之间的内在关系,使离 散小波分析变成为现实 Ronald Coifman和Victor Wickerhauser等著名科学家在 把小波理论引入到工程应用方面做出了极其重要贡献 在信号处理领域中,自从Inrid Daubechies完善了小波 变换的数学理论和Stephane Mallat构造了小波分解和重 构的快速算法后,小波变换在各个工程领域中得到了 广泛的应用,典型的如语音信号处理、医学信号处理、 图像信息处理等
2.4 塔式算法
(1) 信号在小波空间的展开为:
ft fW j ft,j,k tj,k t
jห้องสมุดไป่ตู้Z ,k Z
j Z k Z
(2)小波分解算法 使用多分辨析的金字塔算法:
f t f t ,j , k t j , k t f t ,j , k t j , k t
小波变换原理与应用
专业:xxx 姓名:
2016年3月26号
1
为什么需要要对信号进行变换
原始信号有一些信息是很难获取的,为了获得更多的 信息,我们需要对原始信号进行数学变换。从而获得 更多的信息。例如生活中常见的心电图,在心电图的 时域信号中一般很难找到这些病情,所以心脏病专家 一般用记录在磁带上的时域心电图来分析心电信号, 从而确定病症是否存在。
信号二
对上面两个信号进行FT后得到的频域图 信号一
由于这个信 号的频率分 量一直保持 不变,我们 将此类信号 称之为平稳 信号
信号二
非平稳信号
由上面两个频域图可以看出傅里叶变换只能给出信 号的频谱分量,而无法给出相应的频谱分量的出现时间 ,当我们想知道频率分量出现的确切时间时,傅里叶变 换对于非平稳信号是不合适的。而且现实中几乎所有的 生物信号都是非平稳的。那么我们应该怎样将时间信息 加到频率图中去呢?这时我们可以考虑将部分非平稳信 号看成平稳信号。
加窄窗之后对应的 STFT,可见有较好 的时间分辨率,但 是频率分辨率很差。
加较宽窗之后对应 的STFT,可见有较 好的频率分辨率, 但是时间分辨率很 差。
2.1 小波的发展历史——工程到数学
1807: Joseph Fourier——FT,只有频率分辨率而没有时 间分辨率 1909: Alfred Haar——发现了Haar小波 1945: Gabor——STFT 1980:Morlet——Morlet小波,并分别与20世纪70年代 提出了小波变换的概念,20世纪80年代开发出了连续 小波变换CWT( continuous wavelet transform ) 1986:Y.Meyer——提出了第一个正交小波Meyer小波 1988: Stephane Mallat——Mallat快速算法(塔式分解 和重构算法)
主要内容 一、FT和STFT 二、小波变换 三、小波变换在图像处理中的应用
3
1.1 傅里叶变换(FT)
FT:S(f)s(t)ej2fd t t
IFT:s(t) S(f)ej2fd t f
通过上述FT公式可以发现,信号的频域是一些指数 项的累加和,每个指数项对应特定的频率,然后在整个 时域整合起来。其中指数项可以用以下的表达式表示: