当前位置:文档之家› 凝固原理-7铸件凝固组织控制

凝固原理-7铸件凝固组织控制


3
2013/12/16
以Al-Cu( CCu = 4.5% )合金为例,该合金凝固时收缩率为0.057
液 体 流动速度等于 零 的 地方,对于凝 固 时收缩的合金来 说将 产生正偏析。
Al-Cu合金相图
因为对于凝固时收缩的合金来说,它和 凝固 时没有体积变化的合金(凝固时体积不 收缩 也不膨胀)相比,固相分率减少,与之 相对 应,也就是说液相分率增加,而液相内 溶质 浓度是高的,因此,该地区的最终溶质 平均 C 浓度 会增加,形成正偏析。
fS * CS = k0C0 1 − 1 + α k0
τf
k0 −1
α = DSτ f / λ 2
枝 晶 偏析在凝固后的均匀化处理
把铸件加热到低于固相线100~200oC,长期保温,使溶质 原子充分扩散, 假设枝晶偏析值近似地为正弦波,根据扩散第二定律可解出 在一定温度下经τ 时间后的偏析幅值A:
S
会增加 ,形成正偏析,
细小断面积为粗大处的1/9,在 断面突然变化的地方,在铸件的 心部,液体金属为了补偿下部铸 件的收缩,其流动速度必须很大, 即接近于大断面处的9倍。
如果在大断面处,其宏观偏析为 “0”,其:
v / R ≈ −0.06
这样,在断面突变处:
v / R = −0.54
显然,这里会产生大的负偏析,
1. 传热条件控制
大量实验证实,降低浇注温度是减少柱状晶 获得细等轴晶的有 效措施之 一,甚至在减少液体流动的情况下也能得到细等轴晶组织。 合理控制冷却条件从而形成宽 的凝固区域和获得大的过冷可促进 熔体生核和晶粒游离。小的温度梯 度和高的冷却速度可以满足上述要 求。但就铸型的冷却能力而言,除 薄壁铸件外,这两者不可兼得。 由于高的冷却速度不仅使温 度梯度变大,而且在凝固初期还 促使稳定凝固壳层的过早形成。 因此对厚壁铸件,一般采用冷却 能力小的铸型以确保等轴晶的形 成,再辅以其它晶粒细化措施以 得到满意的效果。
(1)浇注过程控制技术
铝合金
Ti+B:0.0l(Ti)、0.005(B) Ti+C:0.0l(Ti)、 中间合金:Al-Ti、 0.005(C) Al-Ti-B、A1-Ti-C Ti:0.15 Zr:0.2 0.0l~0.02 纯金属或合金
4
铅合金
铜合金
0.02 ~0.04
纯金属或合金
(a)
(b)
(c)
(4)液相搅拌 采用机械搅拌、电磁搅拌或气泡搅拌均可造 成液相相 对固相的 运动, 引起枝晶的折断、破碎与增殖,达到细化晶粒的 目的。其 中机械和 电磁搅 拌方法不仅使晶粒细化,而且可使晶粒球化,获得流动性 很好的半 固态金 属,可进行半固态铸造或半固态挤压。 胞状偏析 晶界偏析 低合金钢柱状晶的等浓度面
DS 合金元素的固相扩散系数越大,凝 ② 合金元素的固相扩散系数 固过程的扩散就越充分,该元素的偏析也就越轻 。
③ 溶质平衡分配系数
可见,均匀化时间取决于枝晶间距和扩散系数。 枝晶间距越小,均匀化退火时原子扩散路程越短,故均匀化时间 越短。因此,凡能细化枝晶的各种工艺措施均有利于以后的均匀化 退火。偏析元素的扩散系数愈大,在其它条件相同时,均匀化退火 时间愈短。
枝晶生长过程中,在树枝晶各次分枝的根部 同样会由于溶质富集产生 “缩颈”现象,并在液流冲刷和热波动的作用下发生熔断、脱落, 形成自 由晶体。 (3)表面凝固和“晶雨”的形成
人为 地进行表面振动有 利于“ 晶雨”的形成
表面形成的晶核由于密度比液体大而下沉, 另外液相 的流动和 表面的 扰动会带动表面形成的晶核下落形成“晶雨”。
k0小于1时,其值越小,偏析越严重。
2.凝固组织中的宏观偏析及其控制
铸件 各 部 位之间化学 成 分的 差异
铸件产生宏观偏析的规律与铸件的凝固特点密切相 关。当铸件以逐层凝固方式凝固时,宏观偏析的产生主 要与结晶过程中的溶质再分配有关,可用Scheil方程近 似地描述;当铸件以糊状凝固方式凝固时,铸件产生宏 观偏析的原因主要是凝固早期固相或液相的沉浮以及枝 晶间的液体流动。 液态金属沿枝晶间流动的原因主要有:①凝固收 缩(或膨胀)的抽吸作用促使液体流动;②冷却时液 相和固相的收缩;③由于密度差而发生的对流;④大 容积内液体对流向枝晶间的穿透;⑤固一液两相区内 气体的形成。
(d)
镍基高温 合金

碳化物粉末
利用浇注过程液流控制进行晶粒细化的几种方法
(a)中心浇注法 (b)沿型壁浇注 (c)沿型壁四周浇注 (d)斜板浇注 1—中间包 2—冷却水 3—游离晶 4—铸型
2
2013/12/16
第三节 凝固组织中的偏析及其控制
(2)铸型振动 在凝固过程中振动铸型可使液相和固相发生 相对运动 ,导致枝 晶破碎 形成结晶核心。同时振动铸型可促使“晶雨”的 形成。由于“晶雨”的来 源是液态金属表面的凝固层,当液态金属静止时表面凝固的金属结 壳而不 能下落,铸型振动可使壳层中的枝晶破碎,形成 “晶雨” 。
细化晶粒的主要途径:
①控制传热条件促进熔体生核; ②添加晶粒细化剂,即向液态金属中引入大量形核能力很强 的异质晶核,达到细化晶粒的目的; ③采用机械搅拌、电磁搅拌、铸型振动等力学方法,促使枝 晶折断、破碎,使晶粒数量增多,尺寸减小;
④提高冷却速率使液态金属获得大过冷度,增大形核速率; ⑤去除液相中的异质晶核,抑制低过冷度下的形核,使合金 液获得很大过冷度,并在大过冷度下突然大量形核,获得细小 等轴晶组织。
表面细晶区 内部等轴晶区
表面细晶粒区。它是紧靠型 壁的一个外壳层,由紊乱排 列的细小等轴晶所组成;
平界面
等轴晶
柱状晶
等轴晶
柱状晶区。由自外向内沿着 热流方向彼此平行排列的柱 状晶所组成;
内部等轴晶区。由紊乱排列 的粗大等轴晶所组成。
柱状晶区
铸件典型凝固组织
(a) (b) (c) (d)
铸件凝固过程中的温度分布与凝固方式
金属凝固原理
当液态金属浇入温度较低的铸型中时,型壁附近熔体由 于受到强烈的激冷作用而大量生核加上型壁晶粒脱落、枝晶 熔断和晶粒增殖等各种形式的晶粒游离过程,在铸型表面形 成了无方向性的表面细等轴晶组织。 一旦型壁晶粒互相连接而构成稳定的凝固壳层,处在凝 固界面前沿的晶粒便开始向内生长,在垂直于型壁的单向热 流的作用下,那些择优生长方向与热流方向平行的枝晶,生 长速度快,逐步淘汰取向不利的晶粒而发展成柱状晶组织。 随着熔体的不断冷却,由于生核及晶粒游离、枝晶熔断 等在柱状晶前沿产生大量等轴晶,并形成内部等轴晶区。
悬浮铸造示意图
1.合金粉 2.坩埚 3.金属液流 4.悬浮铸造液
常用合金的晶粒细化剂
合 金 晶粒细化元素 Ti、Zr、Ti+B、 Ti+C Se、Bi2Se3、 Ag2Se、BeSe Zr、Zr+B、 Zr+Mg、 Zr+Mg+Fe+P 碳化物(WC、 NbC)等 加入量(质量分数)/% 加入方法
3. 动力学细化法
3. 等轴晶的形核
(1)型壁处的晶粒游离
合金 的 浇注过热度对游 离晶的形成具有决定性 的影响
液态金属在铸型型壁的激冷作用下依附型壁 形核,这些晶粒在长大过 程中由于根部溶质的富集产生根部“缩颈”现象 ,并在流体的机械冲刷和 温度反复波动的热冲击下,自型壁脱落形成游离 晶。
液相流动对枝晶熔断具有重要影响 (2)枝晶熔断
β = V L − VS V = 1− S VL VL
① 保证合金 成分, 使凝固过程中液体 的密 度差减 到最 小。因 为 液 体 的 密 度 差 是 促使液 体流动的 因素之 一。 ② 适当 的铸件 或 铸 锭高度。因 为液体 的静压头愈 大,流动愈会加剧。 ③ 加入孕育剂细化枝晶组织, 使流动阻力增加, 从而 减小流动速 度。 ④ 在凝固 开始阶段 ,用加速液 体对流的办法,可 以细化晶粒 ,但 在凝固 过 程中 , 应 该使 液体 的对流 运动 停止。 如果自然 对流速 度较 大,应 该外 加磁 场 使 对流 运 动停 止。 可以想象,离心铸件的 宏观 偏析是大的。 ⑤ 加 大冷 却 速 度, 缩短固 /液两 相区的凝固 时间 ,尽量 使R 值增大。浇注 温 度 太 高 、 浇注速度 太快, 均会 延缓铸件冷 却, 从而使 宏观 偏析加剧。
1.凝固组织中的微观偏析及其控制
微观偏析按其形式分为胞状偏析、枝晶 偏析和晶界偏析。它们的表 现 形式虽不同,但形成机理是相似的,都是合金在 结晶过程中溶质再 分配的 必然结果,其中枝晶偏析是微观偏析的主要表现形式。
(3)超声波振动 超声振动可在液相中产生空化作用,形成空隙,当这些空隙崩溃时, 液体迅速补充,液体流动的动量很大,产生很高 的压力, 起到促进 形核的 作用。
第三节 凝固收缩及其控制
减少宏观偏析的措施
消除宏观偏析的条件是:
1. 凝固过 程中的收缩
v β =− R 1− β
(因为此时 CS = C 0 )
也就是:1)v与R两者方向相反;2)
v / R 的绝对值要小,即v要小,而R要大。
1)纯金属 对于纯金属,凝固通常是在恒定的温度下完成的,凝 固期间的体收缩只是相变收缩。凝固收缩率 β 定义为:
2.添加晶粒细化剂法(孕育处理)
异质晶核通过以下途径产生:①晶粒细 化剂中的 高熔点化合物在熔 化过程中不被完全熔化,在随后的凝固过程中成 为异质形 核的核心 。如在高 锰钢中加入锰铁,在高铬钢中加入铬铁都可以直接作为欲 细化相的 非均质晶 核。②晶粒细化剂中的微量元素加入合金液后, 在冷却过程中首先 形成化合 物固相质点,起到异质形核核心的作用。如向铝 合金中加入微量钛 ,在冷却 过程中通过包晶反应形成TiAl3。
4
2013/12/16
2)共 晶
铸件凝固组织控制
凝固原理
李元东
0931-2976795 liyd_sim@
相关主题