单管放大电路
一、实验目的
1. 掌握放大电路直流工作点的调整与测量方法;
2.掌握放大电路主要性能指标的测量方法;
3.了解直流工作点对放大电路动态特性的影响;
4.掌握射极负反馈电阻对放大电路特性的影响;
5.了解射极跟随器的基本特性。
二、实验电路
实验电路如图2.1所示。
图中可变电阻R W是为调节晶体管静态工作点而设置的。
三、实验原理
1.静态工作点的估算
将基极偏置电路CC V ,1B R 和2B R 用戴维南定理等效成电压源。
开路电压CC B B B BB V R R R V 2
12
+=
,内阻
21//B B B R R R =
则
)
)(1(21E E B BEQ
BB BQ R R R V V I +++-=
β,
BQ CQ I I β=
CQ
E E C CC CEQ I R R R V V )(21++-≈
可见,静态工作点与电路元件参数及晶体管β均有关。
在实际工作中,一般是通过改变上偏置电阻R B1(调节电位器R W )来调节静态工作点的。
R W 调大,工作点降低(I CQ 减小),R W 调小,工作点升高(I CQ 增加)。
一般为方便起见,通过间接方法测量CQ I ,先测E V ,)/(21E E E EQ CQ R R V I I +=≈。
2.放大电路的电压增益与输入、输出电阻
be
L C u r R R )
//(β-=
A be
B B i r R R R ////21=
C O R R ≈
式中晶体管的输入电阻r be =r bb′+(β+1)V T /I EQ ≈ r bb′+(β+1)×26/I CQ (室温)。
3.放大电路电压增益的幅频特性
放大电路一般含有电抗元件,使得电路对不同频率的信号具有不同的放大能力,即电压增益是频率的函数。
电压增益的大小与频率的函数关系即是幅频特性。
一般用逐点法进行测量。
测量时要保持输入信号幅度不变,改变信号的频率,逐点测量不同频率点的电压增益,以各点数据描绘出特性曲线。
由曲线确定出放大电路的上、下限截止频率f H 、f L 和频带宽度BW =f H -f L 。
需要注意,测量放大电路的动态指标必须在输出波形不失真的条件下进行,因此输入信号不能太大,一般应使用示波器监视输出电压波形。
三、预习计算
1. 当时
由实验原理知计算结果如下:
可以解出
由此可以计算出该放大电路的输入电阻
输出电阻为
电压增益
2. 当时
由实验原理知计算结果如下:
利用回路的分压特性
可以解得
由此可以计算出该放大电路的输入电阻
输出电阻为
电压增益
3.当与并联时
时,可知
仍然成立,而此时:
四、仿真结果
搭建电路如下:
1.静态工作点的调整
用参数扫描找到静态时使的电阻
同时测得:如下:
用参数扫描找到静态时使的电阻如下图:
同时测得:如下:
总结数据如下:
2.工作点对放大电路动态特性的影响
当时,电路如下:
示波器显示如下:
故放大倍数
R11.0kΩ
测量输入电阻时电路如下:
XSC1
示波器显示如下:
故
测量输出电阻。
当负载电阻接入时电路如下:
示波器显示如下:
当负载电阻不接入时,电路如下:
示波器显示如下:
故输出电阻
当时,电路如下:
示波器显示如下:
故放大倍数
测量输入电阻时电路如下:
XSC1
示波器显示如下:
故
测量输出电阻。
当负载电阻接入时电路如下:
示波器结果如下:
当负载电阻不接入时,电路如下:
示波器显示如下:
故输出电阻
综上结果如下(表中电压均为最大值):
3.幅频特性
由于隔直电容比较小,此处近似认为输入电压的幅值变化不大,仿真输出曲线与数据见附图,整理如下:
时的幅频特性曲线
时的幅频特性曲线
数据统计如下表:
五、实验内容与数据记录
1.利用学习机上的晶体管输出特性测出三极管的放大倍数
205
2. 调节,使、,测量的值。
3.情况下,测量放大电路的动态特性(电压增益、输入电阻、输出电阻)和幅频特性。
动态特性(电压均为有效值):
幅频特性:
4.数据汇总与误差分析
由表格可以看出:
1.理论计算、仿真数据与实验数据较为接近,部分数据与理论值相差较大,主要是理论值对于晶体管设定为理想,与实际元件有所差别。
2.比较仿真与实际实验的频率响应可以看到下限截止频率可比,而上限截止频率差别较大,这应该与两个因素有关:第一,实验中所使用的晶体管不够理想,级间电容与仿真软件中元件差别较大;第二,实验中使用实际示波器,而仿真中采用的是理想示波器,示波器的电容对于上限截止频率造成影响。
但是静态电流增加时,上限截止频率变小,下限截止频率增加,频带变窄的特性仍然不变。
3.整体上看来,理论计算和仿真实验可以在一定范围符合实际情况,指导实际实验。
【分析实验误差产生的原因】:
1.实验仪器的误差
实际试验的示波器并不理想,有内阻也有电容,测上限截止频率时,会受到示波器中电容等内部元件的影响,并且由于示波器分辨率的问题导致数据不准确;此外频率信号发生器也会给电路带来影响;用数字万用表测电阻以及静态工作点时,也会带入仪器误差。
2.实验元器件的误差
由于实际晶体管与理想晶体管有一定差别,其工作区的线性程度也不能完全得到保证,因此导致一定误差。
3. Rw的理论值偏差较大分析
若考虑射极电阻的影响,Rw的实测值和仿真值都很准确。
测量fH时,即使探头使用*10档,所测结果与实际仍有很大差距。
示波器输入电容降低了原电路的上限截止频率。
六、思考题
1.若将图
2.1 所示放大电路的直流工作点调至最佳状态(即当输入信号幅度增大时,输
出波形同时出现饱和与截止失真),列表说明各参量的单独变化(增大或减少)对输出信号动态范围有何影响。
如果输入信号幅度增大,在上述各种情况下输出信号波形首先将产生什么性质的失真?
答:列表如下所示:
2.能否用数字万用表测量图2.1 所示放大电路的增益及幅频特性,为什么?
答:不能用数字万用表测量幅频特性。
万用表的工作频率范围较小,不能完全满足测量要求。
使用万用表可以在一定范围内测量增益。
但是因为无法估计万用表内部电容
对于所测增益点的频率响应,并不能保证万用表测量值的准确性。
(即通频带较窄,不易找到合适的测量点)。
并且使用数字万用表时测出的是电压的有效值,但因无法观察到波形,故无法判断波形是否失真,失真时算出的电压增益没有意义。
示波器可以克服以上问题,还可以保证较高精度,同时能显示相位差等相关特性,更实用方便。
3、测量放大电路输入电阻时,若串联电阻的阻值比其输入电阻大得多或小得多,对测量结果会有什么影响?
答:若电压表测量误差为+/-0.1,则当串联电阻的阻值比其输入电阻大得多或小得多时,必有一处电压值会过小,电压测量的相对误差0.1/U 就会很大,造成所得输入电阻的相对误差增大。
5、一般是改变上偏置电阻Rb1来调节工作点,为什么?改变Rb2或Rc 可以吗?为什么?
答: Vbb=Vcc*Rb2/(Rb2+Rb1)=Vcc/(Rb1/Rb2+1) 所以可以通过调节Rb1来调节工作点; 从上述公式看来,改变Rb2也是可以的;
但改变Rc 不可以,调节Rc 只能改变管压降,改变不了Ic 。
七、实验结论
放大电路直流工作点主要参数包括BQ I 、CQ I 、CEQ U ,
与电路元件参数CC V 、C R 、B R 、E R 及晶体管的 均有关,在实际工作中一般通过上偏置电阻1B R 来调节静态工作点。
放大
电路主要性能参数中,静态参数主要借助万用表直接或间接测量,动态参数则主要借助示波器测量。
单管放大电路中直流工作点的设置会影响动态参数如电压增益、输入电阻、频带宽度等。
发射极负反馈电阻会对放大电路的动态特性造成影响,如减小电压增益,展宽频带等,但会稳定静态工作点。
八、实验小结与收获
本次实验是我做的第一个完整的电子电路实验,从开始的预习理论计算到仿真模拟分析,再到时基搭建电路测量,在这整个过程中,我更深入的了解了单管放大电路的工作原理以及
每个变量对放大电路的影响情况。
在本次实验中我也发现提前明白实验测量原理的必要性,只有清楚自己该做什么了才能在实验中有条不紊,才能在规定的时间内及时完成实验。
第一次去的时候,由于我仿真预习不到位,导致最后最后仿真都没做完。
第二周的时候我吸取上次的教训,提前完成了上次未完成的仿真,并提前搭好电路。
在第二周的时候,由于准备充分,我及时完成了实验任务。
总之,做电子电路实验前一定要做好预习,提前了解原理,为实际实验做好充分的准备。