当前位置:文档之家› 最新ansys屈曲分析练习模型

最新ansys屈曲分析练习模型

ansys屈曲分析练习模型:边界条件:底端固定几何:长为100mm,截面:10mm×10mm 惯性矩:Izz=833.333材料性质:E=2.0e5MPa,v=0.3分析压力的临界值分析过程:特征值屈曲分析方法:1、建立关键点1(0 0 0),2(0 100 0)2、在关键点1、2之间建立直线3、定义单元类型(Beam3)4、定义单元常数5、定义材料属性6、定义网格大小,指定单元边长为107、划分网格(首先此处应该做一次模态分析,有模态数据文件,后出来才可以看屈曲模态。

)8、定义分析类型(static)9、激活预应力效应。

要进行屈曲分析,必须激活预应力效应。

10、施加位移约束(关键点1固定)11、施加集中荷载,Fy=-1N12、求解13、结束求解,14、重新定义分析类型(Eigen Buckling)15、设置屈曲分析选项,提取1阶模态(菜单路径:Solution-->Analysis Type-->Analysis options16、求解,结束后退出17、解的展开1)设置expansion pass “on”2)设置展开模态为1(Load Step Options>ExpansionsPass>Single Expand>Expand Modes3)重新求解18、查看结果(临界载荷和屈曲模态等)二、非线性分析方法前8步与上述过程相同9、设置分析控制(主要黄色高亮部分区域需要修改)10、施加位移约束(关键点1固定)11、施加集中荷载,Fy=-50000N,Fx=-250N12、求解13、查看变形和位移14、定义时间-历史变量1)进入时间历程后处理器(TimeHist Postproc)2)在弹出的对话框中选择左上角的+号,添加一个监控变量(节点2的Y方向位移)15、查看位移-载荷曲线屈曲分析是一种用于确定结构开始变得不稳定时的临介荷载和屈曲结构发生屈曲响应时的模态形状的技术。

ANSYS提供两种结构屈曲荷载和屈曲模态分析方法:非线性屈曲分析和特征值屈曲分析。

非线性屈曲分析是在大变形效应开关打开的情况下的一种非线性静力学分析,该分析过程一直进行到结构的极限荷载或最大荷载。

非线性屈曲分析的方法是,逐步地施加一个恒定的荷载增量,直到解开始发散为止。

尤其重要的是,要一个足够小的荷载增量,来使荷载达到预期的临界屈曲荷载。

若荷载增量太大,则屈曲分析所得到的屈曲荷载就可能不准确,在这种情况下打开自动时间步长功能,有助于避免这类问题,打开自动时间步长功能,ANSYS程序将自动寻找屈曲荷载。

特征值屈曲分析步骤为:1.建模2.获得静力解:与一般静力学分析过程一致,但必须激活预应力影响,通常只施加一个单位荷载就行了3.获得特征屈曲解:A.进入求解B.定义分析类型C.定义分析选项D.定义荷载步选项E.求解4.扩展解之后就可以察看结果了示例1:! ansys 7.0 有限元分析实用教程! 3.命令流求解! ANSYS命令流:! Eigenvalue BucklingFINISH ! 这两行命令清除当前数据 /CLEAR/TITLE,Eigenvalue Buckling Analysis/PREP7 ! 进入前处理器ET,1,BEAM3 ! 选择单元R,1,100,833.333,10 ! 定义实常数MP,EX,1,200000 ! 弹性模量MP,PRXY,1,0.3 ! 泊松比K,1,0,0 !创建梁实体模型K,2,0,100L,1,2 !创建直线ESIZE,10 ! 单元边长为1mmLMESH,ALL,ALL ! 划分网格FINISH ! 退出前处理!屈曲特征值部分/SOLU !进入求解ANTYPE,STATIC ! 在进行屈服分析之前,ANSYS需要从静态分析提取数据PSTRES,ON ! 屈服分析中采用预应力DK,1,ALL ! 定义约束FK,2,FY,-1 ! 顶部施加载荷SOLVE ! 求解FINISH ! 退出求解/SOLU ! 重新进入求解模型进行屈服分析ANTYPE,BUCKLE ! 屈服分析类型BUCOPT,LANB,1 ! 1阶模态,子空间法SOLVE ! 求解FINISH ! 退出求解/SOLU ! 重新进入求解展开模态EXPASS,ON ! 模态展开打开MXPAND,1 ! 定义需要展开的阶数SOLVE ! 求解FINISH ! 退出求解/POST1 ! 进入通用后处理SET,LIST ! 列出特征值求解结果SET,LAST ! 入感兴趣阶数模态结果 PLDISP ! 显示变形后图形!NonLinear Buckling !非线性分析部分FINISH !这两行命令清除当前数据/CLEAR/TITLE, Nonlinear Buckling Analysis/PREP7 ! 进入前处理ET,1,BEAM3 ! 选择单元MP,EX,1,200000 ! 弹性模量MP,PRXY,1,0.3 ! 泊松比R,1,100,833.333,10 ! 定义实常数K,1,0,0,0 ! 底端节点K,2,0,100,0 ! 顶点L,1,2 ! 连成线ESIZE,1 ! 网格尺寸参数设定LMESH,ALL ! 划分网格FINISH ! 退出前处理/SOLU ! 进入求解ANTYPE,STATIC ! 静态分析类型(非屈服分析) NLGEOM,ON ! 打开非线性大变形设置OUTRES,ALL,ALL ! 选择输出数据NSUBST,20 ! 5个子步加载NEQIT,1000 ! 20步迭代AUTOTS,ON ! 自动时间步长LNSRCH,ON ! 激活线搜索选项/ESHAPE,1 ! 显示二维状态下变形图DK,1,ALL,0 ! 约束底部节点FK,2,FY,-50000 ! 顶部载荷稍微比特征值分析结果大 FK,2,FX,-250 ! 施加水平扰动载荷SOLVE ! 求解FINISH ! 退出求解/POST26 ! 进入时间-历程后处理器RFORCE,2,1,F,Y ! 2# 变量表示力NSOL,3,2,U,Y ! 3# 变量表示y 方向位移XVAR,2 ! 将x 轴显示2#变量PLVAR,3 ! y轴显示3#变量数据/AXLAB,Y,DEFLECTION ! 修改y 轴标签/AXLAB,X,LOAD ! 修改x 轴标签/REPLOT ! 重新显示图形示例2:!悬臂梁受端部轴向压力作用的屈曲分析!先进行静力分析,在进行特征值屈曲分析,最后进行非线性分析!静力分析fini/cle/filname,beam-flexure/tittle,beam-flexure/prep7*set,f1,-1e6 ! 设置轴向压力荷载参数et,1,beam189mp,dens,1,7.85e3 ! 设置材料参数mp,ex,1,2.06e11mp,nuxy,1,0.2sectype,1,beam,I,,2 ! 设置截面参数secoffset,centsecdata,0.15,0.15,0.25,0.015,0.015,0.015,0,0,0,0k,1,0k,2,2.5,0k,3,1.25,1lstr,1,2latt,1,,1,,3,,1lesize,1,,,10lmesh,1/view,1,1,1,1/eshape,1.0dk,1,,,,0,all,fk,2,fx,f1 ! 施加关键点压力finish/soluantype,0eqslv,spar ! 求解器设置稀疏矩阵直接法 pstres,on ! 打开预应力开关solvefinish!特征值屈曲分析/soluantype,1bucopt,lanb,6,0 ! 取前六阶模态分析mxpand,6,0,0,1,0.001solvefinish/post1*do,i,1,6set,ipldisp,i*enddo*get,freq1,mode,1,freqfinish!非线性屈曲分析/config,nres,200 ! 只记录两百步的结果/prep7tb,biso,1,1,2 ! 定义材料非线性tbtemp,0tbdata,,2.0e8,0upgeom,0.01,1,1,'beam-flexure','rst'! 对有限元模型进行一阶模态的位移结果0.01 倍的修改 save,beam-flexure,dbfinishresu,beam-flexure,db/soluantype,0nlgeom,1 ! 打开大变形outres,all,allarclen,1,0 ! 弧长法设置arctrm,l ! 弧长法终止准则达到第一个峰值时终止计算nsubst,200,,,1fk,2,fx,f1*freq1!fk,2,fx,f1*freq1*1.2 ! 将轴向压力值放大,放大系数为第一阶模态的主频solvefinish问题描述一根直的细长悬臂梁,一端固定一端自由。

在自由端施加载荷。

本模型做特征值屈曲分析,并进行非线性载荷和变形研究。

研究目标为确定梁发生分支点失稳(标志为侧向的大位移)的临界载荷。

问题特性参数本例使用如下材料特性:杨氏模量=1.0X10e4psi泊松比=0.0本例使用如下的几何特性:L=100inH=5inB=2in本例的载荷为:P=1lb问题示意图特征值屈曲分析是线性化的计算过程,通常用于弹性结构。

屈曲一般发生在小于特征值屈曲分析得到的临界载荷时。

这种分析比完全的非线性屈曲分析需要的求解时间要少。

用户还可以做非线性载荷和位移研究,这时用弧长法确定临界载荷。

对于更通用的分析,一般要进行崩溃分析。

在模型中有缺陷时一定要做非线性崩溃分析,因为此时模型不会表现出屈曲。

可以通过使用特征值分析求解的特征向量来添加缺陷。

特征向量是最接近于实际屈曲模态在预测值。

添加的缺陷应该比梁的标准厚度要小。

缺陷删除了载荷-位移曲线的突变部分。

通常情况下,缺陷最大不小于10%的梁厚度。

UPGEOM命令在前一步分析的基础上添加位移并更新变形的几何特征。

第一步:设置分析名称和图形选项1.选择菜单Utility Menu>File>Change Title。

2.输入“Lateral Torsional Buckling Analysis”并单击OK。

3.确认PowerGraphics正在运行。

选择菜单Utility Menu&gtlotCtrls>Style>Hidden-Line Options。

确认PowerGraphics选项打开并单击OK。

4.将Graphical Solution Tracking打开。

选择菜单Main Menu>Solution>-Load Step Opts-Output Ctrls>Grph Solu Track并确认对话框中radio按钮设置为ON。

相关主题