当前位置:文档之家› 自组织竞争网络

自组织竞争网络


5.1 竞争学习的概念与原理
5.1.1 基本概念
1.模式、分类、聚类与相似性
模式:是对某些感兴趣的客体的定量描述或结构描
述,模式类是具有某些共同特征的模式的集合。
分类(有导师指导) :是在类别知识等导师信号的
指导下,将待识别的输入模式分配到各自的模式类 中去。
聚类(无导师指导):将相似的模式样本划归一类,
(2)余弦法 计算两个模式向量夹角的余弦,两个模式向量越接近,其夹 角越小,余弦越大。对模式向量间的夹角作出规定,就为一 种聚类判据。适合模式特征只与向量方向相关的相似性测量。
n维空间欧式距离公式
d=sqrt( ∑(xi1-xi2)2 )
i=1,2...n
xi1表示第一个点的第i维坐标,
xi2表示第二个点的第i维坐标。
4.向量归一化 向量归一化的目的是将向量变成方向不变长度为1 的单位向量。比较时,只需比较向量的夹角。归一 化后的向量用 ^标记。
4.1.2 竞争学习原理 1.竞争学习规则 典型竞争学习规则称为胜者为王。算法分3个步骤。
(1)向量归一化 对输入模式向量X和竞争层中各神经元对应的内 星权向量wj进行归一化处理。 (2)寻找获胜神经元 X输入给网络时,竞争层的所有神经元对应的内 星权向量Wj均与X进行相似性比较, 将与X最相似的 内星权向量判为竞争获胜神经元,其权向量记为Wj*。 测量相似性的方法是对Wj和X计算欧式距离(或夹角 余弦)
训练前先对竞争层权向量随机初始化。初始状态,单位圆上 的“*”是随机分布的。前已证明,两个向量的点积越大,两 者越近似,因此以点积最大获胜的神经元对应的权向量应最接 近当前输入模式。从图,如果当前输入模式用“o”表示,单位 圆上各“*”点代表的权向量依次同“o”点代表的输入向量比 较
距离,结果是离得最近的那个*获胜。
调整后,获胜*点的位置进一步移向o点及其所在 的簇。显然,当下次出现与o点相像的同簇内的输 入模式时,上次获胜的*点更容易获胜。
依此方式经过充分训练后,单位圆上的4个*点会 逐渐移入各输入模式的簇中心,从而使竞争层每个 神经元的权向量成为一类输入模式的聚类中心。当 向网络输入一个模式时,竞争层中哪个神经元获胜 使输出为1,当前输入模式就归为哪类。
3.侧抑制与竞争
在人的视网膜中,存在着一种“侧抑制” 现象,即一个神经细胞兴奋后,通过它的分 支会对周围其他神经细胞产生抑制。这种侧 抑制使神经细胞之间出现竞争,虽然开始阶 段各个神经细胞都处于程度不同的兴奋状态, 由于侧抑制的作用,各细胞之间相互竞争的 最终结果是:兴奋作用最强的神经细胞所产 生的抑制作用战胜了它周围所有其他细胞的 抑制作用而“赢”了,其周围的其他神经细 胞则全“输”了。(胜者为王)
而将不相似的分离开,其结果实现了模式样本的类 内相似性和类间分离性。对一组输入模式,只能根 据它们之间的相似程度分为若干类,因此相似性是 输入模式的聚类依据。
2.相似性测量
欧式距离法和余弦法。 (1)欧式距离法
欧式距离,即两个模式向量的欧式距离越小,两个向量越接 近,因此认为这两个模式越相似,当两个模式完全相同时其 欧式距离为零。对各个模式向量间的欧式距离作出规定,则 最大欧式距离T就成为一种聚类判据。同类模式向量的距离 小于T,异类模式向量的距离大于T。
权向量经调整后不再是单位向量,因此需要对调整后 的向量重新归一化。步骤(3)完成后回到步骤(1)继续训 练,直到学习率α衰减到0或规定的值。
2.竞争学习原理
设输入模式为二维向量,归一化后 其矢端可以看成分布在单位圆上的点, 用“o”表示。竞争层4个神经元对应的 4个内星权向量归一化后在单位圆上用 *表示。输入模式点分布大体上聚集为 4簇,可分4类。而训练样本中无分类 指导信息,网络如何自动发现样本空 间的类别划分?
人获得大量知识常常是靠“无师自通”,即通过 对客观事物的反复观察、分析与比较,自行揭示其 内在规律,并对具有共同特征的事物进行正确归类。
自组织神经网络的无导师学习方式类似于大脑中 生物神经网络的学习,其最重要的特点是通过自动 寻找样本中的内在规律和本质属性,自组织、自适 应地改变网络参数与结构。
自组织网络结构上属于层次型网络,有多种类型, 其共同特点是都具有竞争层。输入层负责接受外界 信息并将输入模式向竞争层传递,起“观察”作用, 竞争层负责对该模式进行“分析比较”,找出规律 以正确归类。
=0.65
W32=0.1+0.5(0.2-0.1)
=0.15
4.2 自组织特征映射神经网络(SOFM)
1981年Kohonen提出,又称Kohonen网。他认为, 一个神经网络接受外界输入模式时,将会分为不同的 对应区域,各区域对输入模式具有不同的响应特征, 且该过程自动完成。特点与人脑的自组织特性相类似。
将上式展开,并利用单位向量的特点,可得
可见,欲使两单位向量的欧式距离最小,须使两
向量的点积
最大。
(3)网络输出与权值调整
算法规定,获胜神经元输出为1,其余输出为0。
即只有获胜神经元才有权调整其权向量wj,调整后权向 量为
α∈(0,1]为学习率,其值随着学习的进展而减小。可 以看出,当j≠j*时,权值得不到调整,实质是“胜者” 对它们进行了强侧抑制,不允许兴奋。
竞争学习算法示例
0
0
1
0
1
2
j
4
0.3 0.6
0.2
0.7

0.7 0.1
0.3
0.6
0.6
0.2
j
WX
1 0.36+0.06=0.42
2 0.12+0.14=0.26
3 0.42+0.02=0.44
4 0.18+0.12=0.30
第3个神经元获胜
设a=0.5
w31=0.7+0.5(0.6-0.7)
4.2.1 SOFM生物学基础
生物视网膜中有许多特定的细胞对特定的图形比较 敏感,当视网膜中有若干个接收单元同时受特定模式 刺激时,就使大脑皮层中的特定神经元开始兴奋,输 入模式接近,对应的兴奋神经元也相近。大脑皮层中 神经元的这种响应特点是通过后天的学习自组织形成 的。
4.2.2 SOFM网的拓扑结构与权值调整域
1.拓扑结构
SOFM网共有两层,输入层各神经元通过权向量将外界信息 汇集到输出层的各神经元。输入层形式与BP相同,神经元数 与样本维数相等。输出层也是竞争层,神经元的排列有多种形 式,如一维线阵、二维平面阵和三维栅格阵,常见的是前两种 类型。
相关主题