274第四章 螺旋桨模型的敞水试验螺旋桨模型单独地在均匀水流中的试验称为敞水试验,试验可以在船模试验池、循环水槽或空泡水筒中进行。
它是检验和分析螺旋桨性能较为简便的方法。
螺旋桨模型试验对于研究它的水动力性能有重要的作用,除为螺旋桨设计提供丰富的资料外,对理论的发展也提供可靠的基础。
螺旋桨模型敞水试验的目的及其作用大致是:① 进行系列试验,将所得结果分析整理后绘制成专门图谱,供设计使用。
现时各类螺旋桨的设计图谱都是根据系列试验结果绘制而成的。
② 根据系列试验的结果,可以系统地分析螺旋桨各种几何要素对性能的影响,以供设计时正确选择各种参数,并为改善螺旋桨性能指出方向。
③ 校核和验证理论方法必不可少的手段。
④ 为配合自航试验而进行同一螺旋桨模型的敞水试验,以分析推进效率成分,比较各种设计方案的优劣,便于选择最佳的螺旋桨。
螺旋桨模型试验的重要性如上所述,但模型和实际螺旋桨形状相似而大小不同,应该在怎样的条件下才能将模型试验的结果应用于实际螺旋桨,这是首先需要解决的问题。
为此,我们在下面将分别研究螺旋桨的相似理论以及尺度作用的影响。
§ 4-1 敞水试验的相似条件从“流体力学”及“船舶阻力”课程中已知,在流体中运动的模型与实物要达到力学上的全相似,必须满足几何相似、运动相似及动力相似。
研究螺旋桨相似理论的方法甚多,所得到的结果基本上是一致的。
下面将用量纲分析法进行讨论,也就是用因次分析法则求出螺旋桨作用力的大致规律,然后研究所得公式中各项的物理意义。
可以设想,一定几何形状的螺旋桨在敞水中运转时产生的水动力(推力或转矩)与直径D (代表螺旋桨的大小)、转速n 、进速V A 、水的密度ρ、水的运动粘性系数ν及重力加速度g 有关。
换言之,我们可用下列函数来表示推力T 和各因素之间的关系,即T = f 1(D ,n ,V A ,ρ,ν,g ),为了便于用因次分析法确定此函数的性质,将上式写作:T = k D a n b c A V ρ d ν e g f (4-1) 式中k 为比例常数,a 、b 、c 、d 、e 、f 均为未知指数。
将(4-1)式中各变量均以基本量(即质量M 、长度L 、时间T )来表示,则得:2T ML =f2e2d3cba 1⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛T L T L L M T L T kL275比较上述等式两端的基本因次,可得未知指数之关系为:⎪⎭⎪⎬⎫----=-++-+== f e c b T f e d c a L d M 22:231:1: (4-2)由(4-2)式中解得:⎪⎭⎪⎬⎫---=---== f e c b f e c a d 22241 (4-3)将(4-3)式代入(4-1)式得:T = kD4-c-2e-f n2-c-e-2fc AV ρ1νe g f = k ρn 2D 4f22e 2c A g ⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛D n D nD νnD V式中,cA ⎪⎭⎫ ⎝⎛nD V 、e2⎪⎭⎫ ⎝⎛nD ν、f22g ⎪⎭⎫⎝⎛D n D 均为无因次数。
从而可以推想到更普遍一些的写法是T =)g ,,(222A 142DD n νnD nD V f D n ρ⋅ 或K T =)g ,,(222A 142DD n νnD nD V f D n ρT= (4-4) 式中,K T 为推力系数。
与上述推导相类似,我们可以求得螺旋桨的转矩系数K Q 及效率0η的表达式为:K Q =)g ,,(222A 252D D n νnD nD V f D n ρQ= (4-5) 0η =)g ,,(π2222A 3Q T DD n νnD nD V f J K K =⋅ (4-6)(4-4)、(4-5)及(4-6)式所表示的函数1f 、2f 及3f 视螺旋桨的形状而定。
根据相似理论,对于几何相似的螺旋桨及其模型说来,必然具有相同的函数1f 、2f 及3f ,若函数内各无因次数相同,则几何相似的螺旋桨成为动力相似,其推力系数K T 转矩系数K Q 及效率0η相等。
现分别讨论函数f 内各项的物理意义: ①nD V A 为进速系数J ,两几何相似螺旋桨的nD V A 相同,即nDVπA 数相等,则螺旋桨及其模型在各对应点处流体质点的速度具有相同的方向,且其比值为一常数,亦即对应点处流体质点的行迹相似。
因此,这是运动相似的基本条件。
② νnD 2为雷诺数Re (螺旋桨的雷诺数可有多种表示方法,见本章§4-2),模型和实桨粘性力相似必须满足雷诺数相同的条件,当螺旋桨及其模型之雷诺数相同时,两者之粘性力系 数相等,亦即由粘性而产生的力也与42D n ρ成比例。
③ D D n g 22相当于傅汝德数Fr=D nDg π (也可用DV g A 来表示),表示模型和实物的重力相似条件,与螺旋桨运转时水面的兴波情况有关,也可以说与螺旋桨在水面下的沉没深度有关。
276实践证明,当桨轴的沉没深度h s >0.625D (D 为螺旋桨直径),兴波的影响可以忽略不计。
故在水面下足够深度处进行模型试验时,傅汝德数可不予考虑。
综上所述,当螺旋桨在敞水中运转时,如桨轴沉没较深,则其水动力性能只与进速系数J 和雷诺数Re 有关,亦即K T =),(1Re J f (4-7) K Q =),(2Re J f (4-8)0η=),(3Re J f (4-9)现在进一步讨论满足相似定理的两几何相似螺旋桨(简称桨模和实桨)转速和进速之间的关系。
令V As 、n s 、D s 、s ν及V Am 、n m 、D m 、m ν分别表示实桨及桨模的进速、转速、直径和水的运动粘性系数,λ为实桨与桨模的尺度比数,即λ=m s D D由进速系数相等的条件可得:m m AmD n V =s s As D n V 或 λn n V V 1s m As Am ⋅= (4-10)由雷诺数相等的条件可得:m 2m m νD n =s2s s νD n 因s ν与m ν相差很小,设s ν=m ν,则满足雷诺数相等的条件为:2mm D n =2s s D n 或 s m n n =2m2s D D =2 λ (4-11)由此可见,要保持桨模和实桨的进速系数和雷诺数同时相等,则必须满足:⎪⎪⎭⎪⎪⎬⎫=== 1.s m As Am 2smλλn n V V λn n (4-12)此时,桨模发出的推力T m 将等于实桨发出的推力T s ,因为:T m =K T 4m 2m D n ρ= K T 44s42sλD λn ρ= T s显然,在模型试验时如要求满足进速系数和雷诺数同时相等的条件,则桨模的转速和进速都将过高而难以实现,推力过大而无法测量。
因此,在进行螺旋桨模型的敞水试验时,通常只满足进速系数相等,对于雷诺数则仅要求超过临界数值(以c Re 表示),即当Re >c Re 的条件下,⎭⎬⎫== J f K J f K )()(2Q 1T (4-13)至于桨模和实桨因Re 不同而引起两者水动力性能之差异称为尺度作用(或尺度效应)。
277§ 4-2 临界雷诺数和尺度效应一、临界雷诺数前已述及,螺旋桨模型试验时的雷诺数无法保持与实桨相同,若雷诺数过低,则由于桨叶切面上流动状态与实桨不同,将使试验结果无实用价值,因此必须确立一个模型桨试验的最低雷诺数值——称为临界雷诺数。
决定粘性流体流动状态的基本参数之一为雷诺数,当雷诺数足够大时,界层中的流动才能达到紊流状态,故临界雷诺数乃为保证模型界层中达到紊流状态的最低雷诺数。
雷诺数是以特征速度×特征尺度/ν来表示的一个无因次数。
对螺旋桨的雷诺数过去曾用过许多不同的表示方法(如νnD 2、νD V A 等等)。
为统一起见,1978ITTC (国际船模试验池会议的简称,全文为“International Towing Tank Conference ”)规定,螺旋桨的雷诺数以0.75R 处叶切面的弦长及其合速来表示,即Re=νnD V b 22A R 75.0)π75.0(+ (4-14)式中,V A 为进速,n 为转速,D 为螺旋桨的直径,b 0.75R 为0.75R 处叶切面的弦长,ν为水的运动粘性系数。
实桨的Re 数在710上下,处于紊流状态工作,为了使模型试验数据稳定可靠,并能用于实桨,就有必要正确地确定临界雷诺数的数值。
肯夫在汉堡试验池中曾对五个大小不同(直径分别为0.10、0.15、0.20、0.406及0.6m )的νnD 0.20.10R e =×51.00.90.80.70.60.50.40.3ηJ ,××255图 4-1278几何相似模型进行了试验,图4-1为J =0.85时,K T 、K Q 和η0随雷诺数(肯夫用νnD 2来表示)而变化的情况,图中还绘制了K T =0时的J 及K Q 曲线。
由图中可见,当Re (=νnD 2)>4~5×105时,各曲线几乎与横坐标相平行,意即此时螺旋桨的性能几乎与雷诺数无关。
因此这个数值即为临界雷诺数。
六十年代初日本三菱水池谷口中对三个直径不同的几何相似螺旋桨(直径分别为130.14、216.90和309.86mm )进行了试验,图4-2为J =0.4、0.5和0.6时K T 、K Q 和η0随雷诺数(谷0.6η0.40.50.7K Q100.100.050.250.200.15K T3245R e ×10-5图 4-2279口中用0.7R 处叶切面的弦长及合速来表示)而变化的情况。
由图可见,当Re >4.0510⨯时K T 值近似为常数,K Q 值随雷诺数Re 的增加而略有减小。
近年来,我国上海交通大学船舶流体力学研究室为研究尺度作用的需要,对五个几何相似的桨模(直径分别为214.6、169.1、139.5、118.7和103.3mm )进行了敞水试验,试验中,以0.75R 处叶切面弦长计算的雷诺数变化范围为:Re=νnD V b 22A R 75.0)π75.0(+=(1.17~8.09)×510图4-3为K T 、K Q 随雷诺数而变化的情况。
图4-4为敞水效率η0随雷诺数的变化情况。
从图中可见,螺旋桨的临界雷诺数可取为3.0×510。
1978年ITTC 性能委员会报告中原先提出此数值为 2.0×510,经上海交通大学船舶流体力学研究室提出意见后同意改为3.0×510。
R e ×10(b )(a )R e ×1010K QK T-5-5PM 24-54, D = 103.3mmPM 24-47, D = 118.7mm PM 24-33, D = 169.1mm PM 24-40, D = 139.5mmD = 214.6mm图 4-3280二、尺度作用及修正方法因雷诺数不同而对螺旋桨性能的影响通常称为尺度作用。