当前位置:文档之家› 热处理

热处理

热处理的节能潜力很大,如何采取措施来加强节能是摆在每一位热处理工作者面前的重要课题。

下面仅就热处理工艺节能作一简单探讨。

1.降低加热温度一般亚共析碳钢的淬火加热温度在AC3以上30~50℃,共析及过共析碳钢淬火加热温度为AC1以上30~50℃。

但近年来的研究证实,亚共析钢在略低于Ac3的α+γ两相区内加热淬火(即亚温淬火)可提高钢的强韧性,降低脆性转变温度,并可消除回火脆性。

淬火的加热温度可降低40℃。

对高碳钢采用低温快速短时加热淬火,可减少奥氏体碳含量,有利于获得良好强韧配合的板条马氏体,不仅可提高其韧度,而且还缩短了加热时间。

对于某些传动齿轮,以碳氮共渗代替渗碳,耐磨性提高40%~60%,疲劳强度提高50%~80%,共渗时间相当,但共渗温度(850℃)较渗碳温度(920℃)低70℃,同时还可减小热处理变形。

2.缩短加热时间生产实践表明,依工件的有效厚度而确定的传统加热时间偏于保守,因此要对加热保温时间公式τ=α·K·D中的加热系数α进行修正。

按传统处理工艺参数,在空气炉中加热到800~900℃时,α值推荐为1.0~1.8min/mm,这显然是保守的。

如果能将α值减小,则可大大缩短加热时间。

加热时间应根据钢种工件尺寸、装炉量等情况通过实验确定,经优化后的工艺参数一旦确定后要认真执行,才能取得显著经济效益。

3.取消回火或减少回火次数取消渗碳钢的回火,如20Cr钢装载机用双面渗碳活塞销取消回火的疲劳极限较回火的可提高16%;取消低碳马氏体钢的回火,将推土机销轴套简化为20钢淬火态(低碳马氏体)使用,硬度稳定在45HRC左右,产品强度和耐磨性显著提高,质量稳定;高速钢减少回火次数,如W18Cr4V钢机用锯条采用一次回火(560℃×1h)代替传统的560℃×1h三次回火,使用寿命提高40%。

4.用低中温回火代替高温回火中碳或中碳合金结构钢用中、低温回火代替高温回火,可获得更高的多冲抗力。

W6Mo5Cr4V2钢制Φ8mm钻头,在淬火后进行350℃×1h+560℃×1h二次回火,较560℃×1h三次回火的钻头切削寿命提高40。

5.合理减少渗层深度化学热处理周期长,耗电大,如能减少渗层深度以缩短时间是节能的重要手段。

用应力测定求出必要的硬化层深度,表明目前的硬化层过深,只需传统硬化层深度的70%就足够。

研究表明,碳氮共渗比渗碳可减少层深30%~40%。

同时若在实际生产中将渗层深度控制在其技术要求的下限,也可节能20%,同时还缩短了时间,减小了变形。

6.采用高温和真空化学热处理高温化学热处理就是在设备使用温度允许及所渗钢种奥氏体晶粒不长大条件狭,提高化学热处理温度,从而大大加速渗碳的速度。

把渗碳温度从930℃提高到1000℃,可使渗碳速度提高2倍以上。

但由于还存在许多问题,今后的发展有限。

真空化学热处理是在负压的气相介质中进行。

由于在真空状态下工件表面净化,以及采用较高的温度,因而大大提高了渗速。

如真空渗碳可提高生产率1~2倍;在133.3×(10-1~10-2)Pa下渗铝、铬,渗速可提高10倍以上。

7.离子化学热处理它是一种在低于一个大气压的含有欲渗元素的气相介质中,利用工件(阴极)和阳极之间产生辉光放电同时渗入欲渗元素的化学热处理工艺。

如离子渗氮、离子渗碳、离子渗硫等,具有渗速快、质量好、节能等优点。

8.采用感应自行回火采用感应自行回火代替炉中回火,由于是利用感应加热将热量传到淬火层以外,淬火冷却时未全部带走残留下来的热量而实现短时间回火,因而具有高效节能,并在许多情况下(如对高碳钢及高碳高合金钢)可避免淬火开裂,同时一经确定各工艺参数可大批量生产等优点,经济效益显著。

9.利用锻后预热淬火锻后预热淬火不仅可以降低热处理能耗,简化生产过程,而且能使产品性能有所改善。

采用锻后余热淬火+高温回火作为预处理,可以消除锻后余热淬火作为最终热处理时晶粒粗大、冲击韧度差的缺点,比球化退火或一般退火的时间短、生产率高,加上高温回火的温度低于退火和政活,所以能大大降低能耗,而且设备简单,操作容易。

锻后余热正火与一般正火相比,不仅可提高钢的强度,而且可提高塑韧性,降低冷脆转变温度和缺口敏感性,如20i钢锻后在730~630℃以20℃/h的冷速冷却,取得了良好的效果。

10.以表面淬火代替渗碳淬火对含碳量在0.6%~0.8%的中高碳钢经高频淬火后的性能(如静强度、疲劳强度、多次冲击抗力、残余内应力)的系统研究表明,用感应淬火部分代替渗碳淬火是完全可能的。

我们用40Cr钢高频淬火制造变速箱齿轮,代替原20i 钢渗碳淬火齿轮取得了成功。

11.以局部加热代替整体加热对一些局部又技术要求的零件(如耐磨的齿轴径、轧辊辊径等),可采用浴炉加热、感应加热、脉冲加热、火焰加热等局部加热方式代替如箱式炉等的整体加热,可以实现各零件摩擦咬合部位之间的适当配合,提高零件使用寿命,又因为是局部加热,所以能显著减小淬火变形,降低能耗。

我们深深体会到,一个企业能够合理地利用能源,用有限的能源取得最大的经济效益,涉及到用能设备效率的高低,工艺技术路线是否合理,管理是否科学等因素。

这就要求我们用系统的观点综合考虑,每一个环节都不能忽视,同时,要求在制定工艺时,也要有全局的观念,要和企业的经济效益紧密结合,不能为了制定工艺而制定工艺,在市场经济高速发展的今天,这一点尤为重要。

热轧和冷轧都是型钢或钢板成型的工序,它们对钢材的组织和性能有很大的影响,钢的轧制主要以热轧为主,冷轧只用于生产小号型钢和薄板。

1、退火操作方法:将钢件加热到Ac3+30~50度或Ac1+30~50度或Ac1以下的温度(能够查阅有关材料)后,通常随炉温缓慢冷却。

意图:1.下降硬度,进步塑性,改进切削加工与压力加工功能;2.细化晶粒,改进力学功能,为下一步工序做准备;3.消除冷、热加工所发生的内应力。

运用关键:1.适用于合金布局钢、碳素东西钢、合金东西钢、高速钢的锻件、焊接件以及供给状况不合格的原材料;2.通常在毛坯状况进行退火。

2、正火操作方法:将钢件加热到Ac3或Accm 以上30~50度,保温后以稍大于退火的冷却速度冷却。

意图:1.下降硬度,进步塑性,改进切削加工与压力加工功能;2.细化晶粒,改进力学功能,为下一步工序做准备;3.消除冷、热加工所发生的内应力。

运用关键:正火通常作为锻件、焊接件以及渗碳零件的预先热处理工序。

关于功能需求不高的低碳的和中碳的碳素布局钢及低合金钢件,也可作为最终热处理。

关于通常中、高合金钢,空冷可致使彻底或部分淬火,因而不能作为最终热处理工序。

3、淬火操作方法:将钢件加热到相变温度Ac3或Ac1以上,保温一段时刻,然后在水、硝盐、油、或空气中疾速冷却。

意图:淬火通常是为了得到高硬度的马氏体安排,有时对某些高合金钢(如不锈钢、耐磨钢)淬火时,则是为了得到单一均匀的奥氏体安排,以进步耐磨性和耐蚀性。

运用关键:1.通常用于含碳量大于百分之零点三的碳钢和合金钢;2.淬火能充分发挥钢的强度和耐磨性潜力,但一起会构成很大的内应力,下降钢的塑性和冲击韧度,故要进行回火以得到较好的归纳力学功能。

4、回火操作方法:将淬火后的钢件从头加热到Ac1以下某一温度,经保温后,于空气或油、热水、水中冷却。

意图:1.下降或消除淬火后的内应力,削减工件的变形和开裂;2.调整硬度,进步塑性和耐性,取得作业所需求的力学功能;3.安稳工件尺度。

运用关键:1.坚持钢在淬火后的高硬度和耐磨性时用低温回火;在坚持必定韧度的条件下进步钢的弹性和屈从强度时用中温回火;以坚持高的冲击韧度和塑性为主,又有满足的强度时用高温回火;2.通常钢尽量防止在230~280度、不锈钢在400~450度之间回火,因为这时会发生一次回火脆性。

5、调质操作方法:淬火后高温回火称调质,行将钢件加热到比淬火时高10~20度的温度,保温后进行淬火,然后在400~720度的温度下进行回火。

意图:1.改进切削加工功能,进步加工外表光洁程度;2.减小淬火时的变形和开裂;3.取得杰出的归纳力学功能。

运用关键:1.适用于淬透性较高的合金布局钢、合金东西钢和高速钢;2.不只能够作为各种较为重要布局的最终热处理,并且还能够作为某些严密零件,如丝杠等的预先热处理,以减小变形。

6、时效操作方法:将钢件加热到80~200度,保温5~20小时或更长时刻,然后随炉取出在空气中冷却。

意图:1.安稳钢件淬火后的安排,减小寄存或运用时间的变形;2.减轻淬火以及磨削加工后的内应力,安稳形状和尺度。

运用关键:1.适用于经淬火后的各钢种;2.常用于需求形状不再发生变化的严密工件,如严密丝杠、丈量东西、床身机箱等。

7、冷处理操作方法:将淬火后的钢件,在低温介质(如干冰、液氮)中冷却到-60~-80度或更低,温度均匀共同后取出均温到室温。

意图:1.使淬火钢件内的剩余奥氏体悉数或大部转换为马氏体,然后进步钢件的硬度、强度、耐磨性和疲劳极限;2.安稳钢的安排,以安稳钢件的形状和尺度。

运用关键:1.钢件淬火后应当即进行冷处理,然后再经低温回火,以消除低温冷却时的内应力;2.冷处理首要适用于合金钢制的严密刀具、量具和严密零件。

8、火焰加热外表淬火操作方法:用氧-乙炔混合气体焚烧的火焰,喷射到钢件外表上,疾速加热,当到达淬火温度后当即喷水冷却。

意图:进步钢件外表硬度、耐磨性及疲劳强度,心部仍坚持耐性状况。

运用关键:1.多用于中碳钢制件,通常淬透层深度为2~6mm;2.适用于单件或小批量出产的大型工件和需求部分淬火的工件。

9、感应加热外表淬火操作方法:将钢件放入感应器中,使钢件表层发生感应电流,在极短的时刻内加热到淬火温度,然后喷水冷却。

意图:进步钢件外表硬度、耐磨性及疲劳强度,心部坚持耐性状况。

运用关键:1.多用于中碳钢和中堂合金布局钢制件;2.因为皮肤效应,高频感应淬火淬透层通常为1~2mm,中频淬火通常为3~5mm,高频淬火通常大于10mm。

10、渗碳操作方法:将钢件放入渗碳介质中,加热至900~950度并保温,使钢件便面取得必定浓度和深度的渗碳层。

意图:进步钢件外表硬度、耐磨性及疲劳强度,心部依然坚持耐性状况。

运用关键:1.用于含碳量为0.15%~0.25%的低碳钢和低合金钢制件,通常渗碳层深度为0.5~2.5mm;2.渗碳后有必要进行淬火,使外表得到马氏体,才干完成渗碳的意图。

11、氮化操作方法:利用在500~600度时氨气分化出来的活性氮原子,使钢件外表被氮饱满,构成氮化层。

意图:进步钢件外表的硬度、耐磨性、疲劳强度以及抗蚀才能。

运用关键:多用于富含铝、铬、钼等合金元素的中碳合金布局钢,以及碳钢和铸铁,通常氮化层深度为0.025~0.8mm.12、氮碳共渗操作方法:向钢件外表一起渗碳和渗氮。

相关主题