当前位置:文档之家› 车间有机废气课程设计说明书

车间有机废气课程设计说明书

目录目录 (1)前言 (2)1概述 (3)1.1有机废气的来源 (3)1.2有机废气治理技术现状及进展 (4)1.3各种净化方法的分析比较 (5)2设计参数及目标 (6)2.1主要技术参数: (6)2.2设计目标 (6)3设计内容 (6)3.1项目概况 (6)3.2引用标准及设计规范等 (7)3.3计算 (7)3.3.1集气罩的设计 (7)3.3.2管道布局设计 (10)3.3.3风机和电机的选择 (12)3.3.4活性炭吸附过程设计 (14)3.3.5烟囱的设计 (18)3.4工艺说明及流程简图 (18)3.4.1工艺选择 (18)3.4.2工艺流程 (19)4小结 (20)5设计感想 (21)6参考文献 (22)前言大气污染是我国目前最突出的环境问题之一,工业废气是大气污染物的重要来源。

大量工业废气排入大气,必然使大气环境质量下降,给人体健康带来严重危害。

工业废气中最难处理的就是有机废气,有机废气通过呼吸道和皮肤进入人体后,能给人的呼吸、血液、肝脏等系统和器官造成暂时性和永久性病变,尤其是苯并芘类多环芳烃能使人体直接致癌,已经引起人类的高度重视。

工业生产中会产生各种有机物废气,主要包括各种烃类、醇类、醛类、酸类、酮类和胺类等,这些有机废气会造成大气污染,危害人体健康,而且还会造成浪费,所以有机废气的处理与净化势在必行。

进入21世纪,随着社会经济的发展和人们环保意识的增强,人们对环境质量提出了更高的要求。

目前我国的环境问题依然十分突出,已严重地制约了经济发展和人民生活水平的提高,其中有毒有机物对环境污染非常严重,该类污染物具有排放量大、污染面广和难以降解的特点,对它们的污染控制一直是环保工作者研究的重点课题。

本文将介绍一种广泛应用于工业有机废气净化的技术——活性炭吸附法。

本次设计利用固定床吸附器对有机废气进行处理,在进入系统之前,经过了一定的预处理阶段以去除其中的雾状物、粉尘等,避免这些物质对工艺流程的影响,提高了吸附效,经过净化的气体最终经过排放装置达标排放。

本次设计主要涉及五部分内容,包括有机废气的收集、有机废气的处理、净化气体的排放、连接管道的设计计算以及相关设计图的绘制。

其中还介绍了有机废气污染现状与危害,处理的工艺流程和原理、相关的各种标准规则,以及设备的选型于尺寸的计算和简要介绍了活性炭的再生!关键词:有机废气、固定床吸附器、活性炭1概述1.1有机废气的来源有机废气主要来源于石油和化工行业生产过程中排放的废气,特点是数量较大,有机物含量波动性大、可燃、有一定毒性,有的还有恶臭,而氯氟烃的排放还会引起臭氧层的破坏。

石油和化工工厂及石化产品的存储设施,印刷及其他与石油和化工有关的行业,使用石油、石油化工产品的场合和燃烧设备,以石油产品为燃料的各种交通工具都是有机废气的源头。

有机废气的来源和污染途径见表1-1表1-1 有机废气的来源于污染途径1.2有机废气治理技术现状及进展随着科学技术的飞速发展,商品生产给人类物质文明增色添彩,然而与丰富的物质享受相伴而生的是人类生态环境在遭受不断地威胁。

有机废气污染物排放所造成的环境污染问题,带给生态环境和人类身体健康严重的危害性因而成为人们关注的焦点。

有机废气的种类多种多样,所以采用的治理技术也要根据废气的性质而定。

目前有机废气污染物治理的方法主要有两类回收法与消除法。

有机废气回收法主要有炭吸附、变压吸附、吸收法、冷凝法及膜分离技术,回收法是通过物理方法,改变温度、压力或采用选择性吸附剂和选择性渗透膜等方法来富集分离有机废气污染物。

有机废气消除法可分为物理—化学法和生物法两类。

物理化学法主要包括热破坏法、光分解法、点晕法、臭氧分解法等;生物法包括生物过滤器、生物冲刷塔、生物膜反应器、活性污泥法等。

活性炭吸附净化的效率可达95%以上,但需要活性炭的再生装置,否则运行费用太高;若无蒸汽回收,则工艺流程过长,操作费用高,回收的水和溶剂的化合物利用价值也不高,再生时需要有稳定的蒸汽源,且活性炭经反复吸附脱附后吸附的能力逐渐降低,一般使用两、三年后就需更换。

而液体吸收法净化的效率在60%—80%,且存在二次污染。

催化燃烧法净化的效率可达95%以上,但适合处理高浓度、小风量、且废气温度较高的有机气体,所以此方法消耗的能源较大。

目前广泛使用的是吸附—催化燃烧法,它主要是以颗粒状或蜂窝状活性炭为吸附剂,为了保证生产的连续性,一般设置两个吸附床交替使用。

由于切换的周期至少为一天,因此吸附床体积大,吸附剂用量多,设备笨重,投资打,操作麻烦,由于床层体积大,容易出现吸附热的局部积累而引起燃烧爆炸等现象。

针对这些问题,现有新型装置的吸附器,采用一种多单元分流组合结构,并以新型材料—活性炭纤维作为吸附剂,采用PLC电脑来实现整个系统的连续进行。

近年来生物氧化、半导体光催化剂技术也得到很快地发展1.3各种净化方法的分析比较解决有机废气的污染,最根本的方法是加强管理和工艺改革。

由于技术的原因,在现阶段的生产中大量使用无害涂料、无害溶剂是不可能的,非甲烷总烃溶剂的使用量仍然很大,所以必须解决有机废气问题。

目前国内采用的三种净化方法分析比较见表1-2表1—2 国内外有机废气常用处理方法的优缺点比较2设计参数及目标2.1主要技术参数:1、设计范围:有机废气2、处理风量:6000m3∕h;3、废气温度: 25℃;4、净化率: 90%;5、排放高度: 15m;6、排放浓度:达到GB16297-1996《大气污染物综合排放标准》中二级标准;7、运行功率:5.5kw。

2.2设计目标1.严格执行国家有关环境保护的各项规定,确保各项污染指标达到国家及地区有关污染物排放标准。

2.经本处理工艺处理后的废气,将不会产生二次污染。

3.本处理工艺运行安全可靠,处理效果好,维护简单方便。

4.采用低耗能、地运行费用、基建投资少、维护管理方便。

5.工艺设计与设备选型能够在生产运行过程中有较大的调节余地。

3设计内容3.1项目概况某实业有限公司从事健身器材的生产加工,年生产各类健身器材242万台,健身器材的生产加工工艺包括海绵的生产、配件的注塑成型、整体组装三大工序,其中海绵的发泡工序中会产生大量有机废气(主要为非甲烷总烃),需设一套风机风量为6000m3∕h的处理装置,对该车间产生的有机废气进行处理,以达到规定的排放标准(GB16297-1996《大气污染物综合排放标准》表2中二级标准)。

3.2引用标准及设计规范等引用标准GB16297-1996《大气污染物综合排放标准》引用标准GB50316-2000《工业金属管道设计规范》引用标准环境保护设备选用手册3.3计算3.3.1集气罩的设计3.3.1.1简介集气罩是用以捕集污染气流的。

其性能对净化系统的技术经济指标是有直接影响的。

由于污染源设备结构和生产操作工艺的不同,集气罩的形式是多种多样的。

按罩口气流流动方式可将集气罩分为两大类:吸气式集气罩和吹吸式集气罩。

利用吸气气流捕集污染空气的集气罩称为吸气式集气罩,而吹吸式集气罩则是利用吹吸气流来控制污染物扩散的装置。

本设计中采用吸气式集气罩中的外部集气罩来收集污染气体。

由于受到工艺条件限制,一般产生有机废气的车间无法进行密闭,且喷气车间室内横向气流干扰较小,可采用外部集气罩的上部集气罩罩;如图下图3-1图3-1吸收式集气罩3.3.1.2集气罩相关参数的确定(1)罩口速度V x本设计中,污染源产生有机废气可按照轻矿物粉尘,从轻微速度发散到上述平静的空气中参照,所以污染源的控制速度按中表2-1】【9可得: 取0.5~1.0m/s 之间。

本设计选用v x =0.8m/s表3-1】【9 污染源控制速度(2)罩口面积20m 09.28.036006000=⨯==V Q A ㎡取面积为10.2(3)罩口直径m 3.6114.39.02440=⨯=⨯=πA D(4)罩口直边长度.202=L (减少周围空气混入排风系统)(5)罩口敞开面周长m 2.154.139.0244.1340=⨯=⨯=ππA L(6)罩口喇叭口长度d 30≤L 取 0.75m .50.51.5d 10=⨯==L(7)罩的扩张角度(在允许范围内)<——α︒︒=⨯=-︒=60.240.503.615.702d D 2L arctan900 (8)圆形工作台特征尺寸.2m 1d 0=(9)工作台至地面高度:.2m 1d 00==H.203.30.51.50d d 0>又== (设计符合要求)<<.026.31.213.61d .210==D(10)污染源至罩口高度:H <0.70d =0.7⨯1.2=0.84 取 H=0.8m3.3.2管道布局设计在净化系统中用以输送气流的管道称为风管,通过风管使系统的设备和部件连成一个整体。

该段设计主要是根据集气罩的流量以及净化设备的要求来完成必须的管道的参数设计。

这主要包括:管内流速的确定;管道直径的确定;管道内流体的压力损失;本设计采用圆形风管来进行连接。

3.3.2.1管道内流体速度的确定管道内流体的选择涉及到技术和经济两方面的问题。

因此,要使管道设计计算经济合理,必须选择合适的流速,使投资和运行费用的总和为最少。

一般排风系统风管内常用流速见表3—2【10】表3—2 除尘管道内最低气流速度222m 0.20.504.1341d 41f =⨯⨯==π3.3.2.2管道直径的确定在已知流量和确定流速后,管道直径可按照下式计算:钢板制圆形风管,取风速12m/s风管直径:取圆整为500mm 查【8】规格为500mm ⨯1.0mm风管横截面积 :则实际风管气速: s /m 49.8.504.1360004d 4u 22=⨯⨯==πQ 3.3.2.3管道内流体压力的损失(1)摩擦阻力的计算对于直径为d 的圆形风管,摩擦力计算公式为:l P 2d 2m ρνλ⨯=∆ λ—摩擦阻力系数ν—风管内气体的平均流速,m/sρ—气体的密度,kg/m ³m 2.40124.133********u 36004d =⨯⨯⨯=⨯=πQl —风管的长度,m管径: m 5.0d = 摩擦系数 593.1=λ,m 5=l 风管内气体的平均流速: s /m 49.8=ν则 Pa l P 659249.8147.15.0593.12d 22m =⨯⨯=⨯=∆ρνλ (2)局部阻力的计算 a 10329.4847.115.2222P Pi =⨯⨯=∑=∆ρνε则管路总压力损失为:Pa Pi P P 762103659m 3=+=∆+∆=∆流程总压力损失为:P P P P ∆+∆+∆=∆21=762.9337350++Pa 9.1449=3.3.3风机和电机的选择(1)风量计算在确定管网风量的基础上,考虑到风管、设备的漏风,选用风机的风量应大于管网计算测定的风量,计算公式如下:Q K Q Q =0式中:0Q —选择风机的计算风量,m ³/hQ K —风量附加安全系数,一般管道系数取1.0~1.1,吸收系统去1.1~1.5,且吸收器漏风另加5%~10%,本设计取 1.1=Q K则 h Q K Q Q /m366006000.110=⨯==(2)风压计算考虑到风机性能波动、管网阻力计算的不精确,选用的风机的压力应大于管网计算所确定的风压计算公式如下;Pa P K P p .41667.914495.110=⨯=∆=∆式中:0P —选择风机的计算风量,PaKp —风压附加安全系数,一般管道系统取 1.0~1.5,除尘系统取1.15~1.20本设计取 1.15p =K又风机样本上的性能参数是在标准状况(大气压力为Pa 510013.1⨯,温度20℃)下得出的,在实际使用情况下不是标准态,风机的风压会变化,风量不变,因此选择风机时对参数进行换算:Pa TP P T P P P 5.15271013252981013252734.166700000=⨯⨯⨯=∆=∆=∆ρρ' 式中 'P ∆—风机在实际工作状况下的风压P ∆—风机样本上的风压000P T 、、ρ—风机在标准状况下的密度、温度和压力P T 、、ρ—风机在实际工况下的密度、温度和压力(3)风机型号在选择风机时应注意以下几个问题:①根据输送气体的性质,确定风机的类型②根据所需风量、风压和选定的风机类型,确定风机的型号③在满足风量的风压的条件下,尽可能选用噪声低、工作效率高的型号④通风机和风管系统的不合理连接可能使风机性能急剧变坏,因此在连续时,要使气体在进出风机时尽可能的均匀一致,不能有方向和速度的突然变化(4)电机型号排风机选择为:C4-73 NO.45 具体性能参数如下:风量:5800~10500m³/h 全压:2450~1421Pa电动机型号:Y160M2-2 功率:15kw3.3.4活性炭吸附过程设计3.3.4.1吸附机理吸附和脱附是互为可逆过程。

相关主题