当前位置:文档之家› 电力电缆漏电流检测

电力电缆漏电流检测

第一章绪论 (2)1.1 研究背景 (2)1.2电力电缆漏电流检测重要性 (3)1.3测试注意事项...................................................................错误!未定义书签。

1.4本文的研究内容 (4)第二章原理分析 (4)2.1在线检测tg 的电桥法: (4)2.2电压跟随器 (8)第一章绪论1.1 研究背景随着我国城市电网改造和升级的计划的实施,使得电力电缆越来越多的应用于各种电压等级的输电线路和配电网中。

据不完全统计,已投入运行的110kV及以上的高压电缆线路达数百公里,而35kV及以下电压等级多达50万公里之多,最高电压等级已达500kv。

通常电力电缆是由导电线芯、绝缘、护套、屏蔽层、铠装等几部分组成。

电力电缆的导电线芯常用铜或铝;电缆的绝缘和护套常用有机绝缘材料,如粘性油纸、橡胶、塑料、交联聚乙烯等,对于更高电压等级的电缆,可以采用充油或充气绝缘;电缆的屏蔽层常用半导电材料,在电缆中起到均匀电场的作用;电缆的铠装是为了保护电缆的绝缘免受外力的损伤,常用钢带、钢丝、铅套、铝套等作电力电缆的铠装。

电力电缆按导电线芯的数量和形状可分为:单芯结构、三相圆芯电缆、三相扇形电缆、四芯扇形电缆等在电力系统中常将电力电缆按绝缘材料分为:油纸绝缘电缆、橡塑绝缘电缆、充油电缆、充气电缆等。

其中油纸绝缘电缆已经逐步退出运行,橡塑绝缘电缆使用量逐年增加,特别是交联聚乙烯电缆近年来已经成为中高压输电系统中的主要品种。

泄漏电流的检测是考核电缆电气性能优劣的一项重要指标,其测试目的是为了鉴别电缆绝缘的品质和发现绝缘中的缺陷。

当被测试样的导电线芯与绝缘层外金属护套之间加上直流电压时,会有微量泄漏电流Iv从导线,经绝缘层流向金属护套(屏蔽接地层),这种电流称为电缆的泄漏电流。

与其相对应的绝缘体积电阻(或绝缘电阻)Rv=U/Iv。

因此,电缆的绝缘电阻越小,其泄漏电流越大,说明其绝缘性能越差。

电缆在实际运用中,如果泄漏电流过大,电缆输送的工作电流会减小,损耗会增大。

这将会使绝缘发热损耗,既限制了电缆的载流量,又加速了绝缘的老化,最终造成电缆热或电击穿。

因此,电缆的泄漏电流是考核电缆绝缘的电气性能重要指标之一,电缆制造厂通常以绝缘电阻的指标来加以考核。

根据国家标准GBJ232—82“电气装置安装工程施工及验收规范”的规定:电缆长度为250m,其泄漏电流Iv ≯50μA;三相泄漏电流的不平衡系数不大于2(即任意二相的泄漏电流之比)。

电线电缆制造厂一般按国家产品标准GB12976—91的规定:只对电缆的绝缘电阻进行测试,并以绝缘电阻值作为考核指标,而对产品的泄漏电流及其不平衡系数均不作规定。

从上述可知,使用部门在电缆线路开通之前都要进行泄漏电流试验,而电缆制造厂的产品出厂试验却只对其绝缘电阻进行测量和考核。

1.2电力电缆漏电流检测重要性电缆是电力系统中使用最为广泛的设备,在各类电气事故波及的设备中,与电缆有关的占了几乎50%,其中大部分又是因为泄漏电流会导致供电末端会抬高电压,对绝缘有影响。

还有对地短路保护的要求高损坏所致。

高压电力电缆在区域间传输大量电能的重要作用,是国民经济的动脉,人们对的它的绝缘检测非常重视,已经做了很多研究。

在我国随着经济的发展,人们生活水平的提高,居民、厂矿用电量近几年在飞速的增加,但是对人们对低压配电网绝缘状况的监测却还没得到足够的重视,并因此造成了相当的人员伤亡和财产损失,给人民群众的生产、生活带来了很大的负面影响。

其中,由于低压电缆老化引起的火灾、触电等安全事故在厂矿、企业、住宅区尤其多见。

据统计,1992~2001年我国共发生电气火灾18.3 万余起,电气火灾年平均起数占火灾年平均总起数的26%,年均损失占火灾损失的36%,其中2001 年发生电气火灾30594 起,是1992 年的2.7 倍。

在这些电气火灾中,由于电气绝缘所引起的火灾又占近50%。

很多电气重特大火灾令人触目惊心,如1999 年12 月19 日发生的呼和浩特宾馆特大火灾就是因电气线路短路所致。

而据发达国家资料介绍,英国每年电气火灾起数占火灾总起数17%以下,日本为13%以下,美国为10%以下。

此外,在我国不论是对于电力电缆还是对于低压配电网,正在应用当中的漏电流检测技术多是停电状态下进行的预防性试验,在线式检测技术还没有得到充分的重视。

因此,为了更加准确、可靠、方便的测量到反映电缆安全系统劣化程度的特征量,及早发现隐患,避免事故的发生,不断研究先进的漏电流在线检测技术和开发出合适的漏电流检测装置是十分必要和迫切的。

在测量时我们还要注意一下几点:1、在工作温度下测量泄漏电流时,如果被测电器不是通过隔离变压器供电,被测电器应彩绝缘性能可靠的物质绝缘垫与地绝缘。

否则将有部分泄漏电流直接流经地面而不经过泄漏电流测试仪,影响测试数据的准确性。

2、泄漏电流测量是带电进行测量的,被测电器外壳是带电的。

因此,试验人员必须注意安全,各式各样试验室应制订安全操作规程,在没有切断电流前,不得触摸被测电器。

3、应尽量减少环境对测试数据的影响,测试环境的温度、湿度和绝缘表面的污染情况,对于泄漏电流有很大影响,温度高、湿度大,绝缘表面严重污染,测定的泄漏电流值较大。

1.4本文的研究内容电力电缆漏电流会导致供电末端会的电压抬高,而且对绝缘有影响。

还有对地短路保护的要求高损坏所致。

第二章 测量原理分析在线检测tg δ的电桥法:在直流电场作用下,由于介质没有周期性的极化过程,介质中的损耗仅仅由电导引起。

在交流电压下,除了电导有耗损之外,还纯在于周期性的极化而引起的能量损耗,因此血药介入行的物理量加以描述。

回路电流C r I I I +=,视在功率 C r jUI UI jQ P S +=+=介质损耗 P =Qtg δ=δωεtg u 2使用介质损耗P 表示绝缘介质的品质好坏是不方便的,因为P 值与试验电压,介质尺寸等因素有关,不同的设备之间很难去进行比较。

所以改用介质损耗角正切tg δ来判断。

tg δ与ε相类似,是仅仅取决于材料的特性和材料的尺寸无关的物理量。

ϕδ-︒=90并联等值电路δωωωδtg C U RU P R C C U R Utg P P P 221====c r I I I +=串联等值电路δδωωωωωωδ222222222221)()1(tg tg C U r C r r rC U C r r U r I P C C I I tg S S S S rS r+=+=+====在停电实验中用电桥法测量tg δ是一种常用的,高精度的测量方法。

如果在运行状态下进行检测,则有性更高。

电桥工作电压一般为10kv ;正接法由于调节部分处于低压臂,操作比较安全;当被测设备必须处于一端接地时,则须要采用反接法。

此时要注意电桥调节部分处于高压侧。

由此可知,由于本文研究的是电力电缆的在线检测,所以我们应该选择电桥法的反接法。

无论正接法还是反接法,电桥平衡时G 中的电流IG = 0,所以:I DA = I AC=I X , I DB =I BC =I 0U DA=U DB,U AC = U BC =U X反接法:⎩⎨⎧==00403Z I Z I Z I Z I XX X ⇒403Z Z Z Z X =⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎨⎧⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛-⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛-==40444444331111C j Z C j R Z C j R C j R Z R Z X X ωωωω 3444444403111)1(R C j R C j R C j R C j Z Z Z Z X X ⎪⎪⎭⎫ ⎝⎛-=⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛-⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛--⇒=ωωωω上式虚实部分别相等,44044340R C R C tg C R C R R R C C X X X X ωωδ==⇒⎪⎪⎩⎪⎪⎨⎧== 通常取 Ω=π4410R , f HZ 50=则 446441010100C C C tg ==••=ππδ在线电桥法消除干扰方法采用电桥法检测的时候,现场的电场以及磁场常常会影响到电桥的平衡以及准确的读数,消除干扰的方法有:(1)可以采用改变试验电源极性的做法:如进行正、反相两次测量等。

(2)采用加移相器的方法。

(3)采用45或55HZ 异频电源的方法,这样可以避开50HZ 的频率的干扰。

(4)磁场干扰往往对电桥检流记回路的影响明显,可将检流计移出磁场干扰区, 或采用更好的磁屏障措施。

在线电桥法的困难(1)需要耐压等级比运行电压更高的标准电容器。

(2)由于设备运行的电压时非常的高的,在电桥调节过程中,4R 上会出现比较高的电压。

(3)在测量中电桥难以平衡。

(4)可能出现流经设备的电流X I 过大,从而导致3R 过热的情况。

第三章 硬件设计3.1电压跟随器电压跟随器的显著特点就是,输入阻抗高,而输出阻抗低。

一般来说,输入阻抗可以达到几兆欧姆,而输出阻抗低,通常只有几欧姆,甚至更低。

在电路中,电压跟随器一般做缓冲级(buffer)及隔离级。

因为,电压放大器的输出阻抗一般比较高,通常在几千欧到几十千欧,如果后级的输入阻抗比较小,那么信号就会有相当的部分损耗在前级的输出电阻中。

在这个时候,就需要电压跟随器进行缓冲。

起到承上启下的作用。

电压跟随器还可以提高输入阻抗,可以大幅度减小输入电容的大小,为应用高品质的电容提供保证。

电压跟随器的另外一个作用就是隔离,在HI-FI 电路中,关于负反馈的争议已经很久了,其实,如果真的没有负反馈的作用,绝大多数的放大电路是不能很好地工作的。

但是引入了大环路负反馈电路,扬声器的反电动势就会通过反馈电路与输入信号叠加,造成音质模糊、清晰度下降。

所以,有一部分功放的末级采用了无大环路负反馈的电路,试图通过断开负反馈回路来消除大环路负反馈的带来的弊端。

但是,由于放大器的末级的工作电流变化很大,其失真度很难保证。

这种情况下电压跟随器可以很好地工作,把电路置于前级和功放之间,可以切断扬声器的反电动势对前级的干扰作用,使音质的清晰度得到大幅度提高。

电压跟随器起缓冲、隔离、提高带载能力的作用。

共集电路的输入高阻抗,输出低阻抗的特性,使得它在电路中可以起到阻抗匹配的作用,能够使得后一级的放大电路更好的工作。

举一个应用的典型例子:电吉他的信号输出属于高阻,接入录音设备或者音箱时,在音色处理电路之前加入电压跟随器,会使得阻抗匹配,音色更加完美。

很多电吉他效果器的输入部分设计都用到了这个电路。

电压隔离器输出电压近似输入电压幅度,并对前级电路呈高阻状态,对后级电路呈低阻状态,因而对前后级电路起到“隔离”作用。

相关主题