当前位置:文档之家› 核能技术应用及发展

核能技术应用及发展

核能技术应用及发展核能是核裂变能的简称,是由于原子核内部结构发生变化而释放出的能量。

核能的释放通常有两种形式,一种是重核的裂变,即一个重原子核(如铀、钚)分裂成两个或多个中等原子量的原子核,引起链式反应,从而释放出巨大的能量;另一种是轻核的聚变,即两个轻原子核(如氢的同位素氘)聚合成为一个较重的核,从而释放出巨大的能量。

重核裂变是指一个重原子核,分裂成两个或多个中等原子量的原子核,引起链式反应,从而释放出巨大的能量。

所谓轻核聚变是指在高温下(几百万度以上)两个质量较小的原子核结合成质量较大的新核并放出大量能量的过程,也称热核反应。

它是取得核能的重要途径之一。

与重核裂变相比,轻核聚变发电有着无可比拟的优点。

(1)能量巨大。

核聚变比核裂变释放出更多的能量。

例如,铀-235的裂变反应,将0.1%的物质变成了能量;而氘的聚变反应,将近0.4%的物质变成了能量。

(2)资源丰富。

重核裂变使用的主要原料是铀,目前探明的储量仅够使用几十年;而轻核聚变使用的是海水中的氘,1升海水能提取30毫克氘,在聚变反应中能产生约等于300升汽油的能量,即“1升海水约等于300升汽油”,地球上海水中就有45万亿吨氘,足够人类使用数百亿年。

而且地球上锂储量有2000多亿吨,锂可用来制造氚,足够人类在聚变能时代使用。

因此受控核聚变的燃料取之不尽、用之不竭。

(3)成本低廉。

1千克氘的价格只为1千克浓缩铀的1/40。

(4)安全、无污染核。

聚变不产生放射性污染物,万一发生事故,反应堆会自动冷却而停止反应,不会发生爆炸。

但是,实现核聚变的条件十分苛刻,为了使2个原子核聚变,必须使两个原子核的一方或双方有足够的能量,去克服彼此之间的静电斥力,满足这样的条件需要几千万甚至几亿摄氏度的高温。

自20世纪70年代起,世界范围内掀起了托卡马克的研究热潮。

目前,全世界有30多个国家及地区开展了核聚变研究,运行的托卡马克装置有几十个。

最近,由中国、美国、欧盟、日本、俄罗斯、韩国共同参与的国际热核反应堆合作计划(ITER)因其最终选址问题再次引起了人们的兴趣。

这个被称为“人造太阳”的热核反应堆,不仅因为13万亿日元的巨大投资引人关注,更因为如能在未来50年内开发成功,将在很大程度上改变目前世界能源格局,使人类拥有取之不尽、用之不竭的理想的洁净能源。

国际热核实验反应堆是继国际空间站之后最大的国际科学合作项目,我国也已正式加盟。

根据计划,世界首座热核反应堆将于2006年开工,2013年前完工。

这预示着在能源革命中占有重要地位的核聚变能开发和利用的曙光已出现,核能文明时代即将到来。

虽然目前化石燃料在能源消耗中所占的比重仍处于绝对优势,但此种能源不仅燃烧利用率低,而且污染环境,它燃烧所释放出来的二氧化碳等有害气体容易造成 "温室效应",使地球气温逐年升高,造成气候异常,加速土地沙漠化过程,给社会经济的可持续发展带来严重影响。

与火电厂相比,核电站是非常清洁的能源,不排放这些有害物质也不会造成"温室效应",因此能大大改善环境质量,保护人类赖以生存的生态环境。

世界上核电国家的多年统计资料表明,虽然核电站的投资高于燃煤电厂,但是,由于核燃料成本远远地低于燃煤成本,相反核燃料反应所释放的能量却远远高于化石燃料燃烧所释放出来的能量,而且核燃料取之不皆,这就使得目前核电站的总发电成本低于烧煤电厂。

目前,核电占世界总发电量的16%,在发达国家占更大的份额,最高达80%,即使目前反核的德国其核能也占20%的比例。

我国目前核能只有不到2%份额,发展余地很大。

将核能作为世界一次能源的主要替代能源,战略意义重大。

*d6核能是安全、清洁的能源。

核电是稳定、可靠的电力,核能是可持续的能源。

核能是经济的能源,是大规模减排温室气体唯一现实可行的选择。

核能产氢将最终取代运输中的石油燃料,减轻对石油需求的压力,解决运输的温室气体排放问题。

核电有许多优点:1.核能发电不像化石燃料发电那样排放巨量的污染物质到大气中,因此核能发电不会造成空气污染。

2.核能发电不会产生加重地球温室效应的二氧化碳。

3.核能发电所使用的铀燃料,除了发电外,没有其他的用途。

4.核燃料能量密度比起化石燃料高上几百万倍,故核能电厂所使用的燃料体积小,运输与储存都很方便,一座1000百万瓦的核能电厂一年只需30公吨的铀燃料,一航次的飞机就可以完成运送。

5.核能发电的成本中,燃料费用所占的比例较低,核能发电的成本较不易受到国际经济情势影响,故发电成本较其他发电方法为稳定。

也有许多缺点: 1.核能电厂会产生高低阶放射性废料,或者是使用过之核燃料,虽然所占体积不大,但因具有放射线,故必须慎重处理,且需面对相当大的政治困扰。

2.核能发电厂热效率较低,因而比一般化石燃料电厂排放更多废热到环境裏,故核能电厂的热污染较严重。

3.核能电厂投资成本太大,电力公司的财务风险较高。

4.核能电厂较不适宜做尖峰、离峰之随载运转。

5.兴建核电厂较易引发政治歧见纷争。

6.核电厂的反应器内有大量的放射性物质,如果在事故中释放到外界环境,会对生态及民众造成伤害。

自20世纪50年代中期第一座商业核电站投资以来,核电发展已历经50年,根据国际原子能机构2005年10月发表的数据,全世界正在运行的核电机组共有442台,其中压水堆占60%,沸水堆占21%,重水堆占9%,石墨堆等其他堆型占10%。

这些核电机组已累计运行超过一万堆每年。

全世界核电总装机容量为3.69亿千瓦,分布在31个国家和地区;核电年发电量占世界发电总量的17%。

核电发电量超过20%的国家和地区共16个,其中包括美、法、德、日等发达国家。

各国核电装机容量的多少,很大程度上反映了各国经济、工业和科技的综合实力和水平。

核电与水电、火电一起构成世界能源的三大支柱,在世界能源结构中有着重要地位。

在国际能源危机的大背景下,为适应经济的快速增长和对环保的迫切要求,核电将迎来新的发展曙光。

经济的全球化和日益加剧的能源国际竞争,使能源供需的矛盾极为尖锐,给我国能源安全和可持续发展带来严峻挑战。

能源需求持续增长,人均资源拥有量不足,能源产消平衡差额持续扩大。

环境保护的要求使清洁能源需求增大,我国能源结构性问题突出。

煤炭是我国能源结构中的主要部分,我国大气污染的80%来自燃煤,煤炭使用排出的污染物导致大气污染和酸雨,造成环境质量恶化。

普遍采用煤炭洁净技术也将使燃料成本大幅提高,并给电力生产带来严峻压力。

未来对清洁高效的能源需求巨大,调整能源结构已是我当务之急。

核能是解决我国能源安全和可持续发展的重要战略能源。

据估计,在世界上核裂变的主要燃料铀和钍的储量分别约为490万吨和275万吨。

这些裂变燃料足可以用到聚变能时代。

轻核聚变的燃料是氘和锂,1升海水能提取30毫克氘,在聚变反应中能产生约等于300升汽油的能量,即"1升海水约等于300升汽油",地球上海水中有40多万亿吨氘,足够人类使用百亿年。

地球上的锂储量有2000多亿吨,锂可用来制造氚,足够人类在聚变能时代使用。

况且以目前世界能源消费的水平来计算,地球上能够用于核聚变的氘和氚的数量,可供人类使用上千亿年。

核能是清洁、安全和经济和可持续的能源,世界核电发展的经验表明:发展核电是降低能源对外依存,保障国家能源安全的重要途径。

2006年国际能源机构首次表示核能是解决能源危机的有效方法。

有关能源专家也认为,如果解决了核聚变技术,那么人类将能从根本上解决能源问题。

核电站只需消耗很少的核燃料,就可以产生大量的电能,每千瓦时电能的成本比火电站要低20%以上。

核电站还可以大大减少燃料的运输量。

例如,一座100万千瓦的火电站每年耗煤三四百万吨,而相同功率的核电站每年仅需铀燃料三四十吨。

核电的另一个优势是干净、无污染,几乎是零排放,对于发展迅速环境压力较大的中国来说,再合适不过。

中国正在加大能源结构调整力度。

积极发展核电、风电、水电等清洁优质能源已刻不容缓。

中国能源结构仍以煤炭为主体,清洁优质能源的比重偏低。

中国国家发展改革委员会正在制定中国核电发展民用工业规划,准备到2020年中国电力总装机容量预计为9亿千瓦时,核电的比重将占电力总容量的4%,即是中国核电在2020年时将为3600-4000万千瓦。

也就是说,到2020年中国将建成40座相当于大亚湾那样的百万千瓦级的核电站。

从核电发展总趋势来看,中国核电发展的技术路线和战略路线早已明确并正在执行,当前发展压水堆,中期发展快中子堆,远期发展聚变堆。

具体地说就是,近期发展热中子反应堆核电站;为了充分利用铀资源,采用铀钚循环的技术路线,中期发展快中子增殖反应堆核电站;远期发展聚变堆核电站,从而基本上“永远”解决能源需求的矛盾。

我国核电经过20多年的发展,取得了显著成绩。

核电设计、建设和运营水平明显提高,核电工业基础已初步形成。

经过起步和小批量两个阶段的建设,目前形成了浙江秦山、广东大亚湾和江苏田湾三个核电基地。

中国核电在技术研发、工程设计、设备制造、工程建设、项目管理、营运管理等方面,具备了相当的基础和实力,为加快发展积累了经验、奠定了坚实的基础。

加快核电发展的时机已经成熟,条件基本具备。

同时,我国核工业经过近五十年实践建立起来的核安全后援与技术支持体系,在核电机组的安全运行、环境保护、放射性废物处理等方面发挥了重大作用。

相关主题