断路器分断能力相关知识
定义
Icu----极限短路分断能力
Ics----运行短路分断能力
Icw----额定短时耐受电流(Rated short-time withstand current)
极限短路分断能力Icu:
是指在一定的试验参数(电压、短路电流、功率因数)条件下,经一定的试验程序,能够接通、分断的短路电流,经此通断后,不再继续承载其额定电流的分断能力。
试验程序为0—t(线上)CO(“O”为分断,t为间歇时间,一般为3min,“CO”表示接通后立即分断)。
试检后要验证脱扣特性和工频耐压。
经此通断后,不再继续承载其额定电流的分断能力。
其具体试验是:把线路的电流调整到预期的短路电流值(例如380V,50KA),而试验按钮未合,被试断路器处于合闸位置,按下试验按钮,断路器通过50KA短路电流,断路器立即开断(OPEN简称O)并熄灭电弧,断路器应完好,且能再合闸。
T为间歇时间(休息时间),一般为3min,此时线路处于热备状态,断路器再进行一次接通(CLOSE简称C)和紧接着的开断(O)(接通试验是考核断路器在峰值电流下的电动和热稳定性和动、静触头因弹跳的磨损)。
此程序即为CO。
断路器能完全分断,熄灭电弧,并无超出规定的损伤,就认定它的极限分断能力试验成功;
注意做过极限分断的断路器不允许再用(往往失效了),必须更换。
运行短路分断能力Ics:
是指在一定的试验参数(电压、短路电流和功率因数)条件下,经一定的试验程序,能够接通、分断的短路电流,经此通断后,还要继续承载其额定电流的分断能力(其次数为寿命数的5%),因此它不单要验证脱扣特性、工频耐压,还要验证温升。
试验程序为O—t(线上)CO—t(线上)CO。
C—close O—open
断路器的运行短路分断能力(Ics)的试验程序比Icu的试验程序多了一次CO。
经过试验,断路器能完全分断、熄灭电弧,并无超出规定的损伤,就认定它的额定进行短路分断能力试验通过。
IEC947_2(以及1997新版IEC60947_2)和我国国家标准GB140482规定,Ics可以是极限短路分断能力Icu数值的25%、50%、75%和100%(B类断路器为50%、75%和100%,B类无25%是鉴于它多数是用于主干线保护之故)。
A类断路器即塑壳式,B类断路器,即万能式或称框架式。
额定短时耐受电流Icw:
是指在一定的电压、短路电流、功率因数下,忍受0.05、0.1、0.25、0.5或1s而断路器不允许脱扣的能力。
也叫热稳定电流。
Icw 是在短延时脱扣时,对断路器的电动稳定性和热稳定性的考核指标,它是针对B 类断路器的,通常Icw的最小值是:当In≤2500A时,它为12In或50kA,而In>2500A时,它为30kA(DW45_2000的Icw为400V、50kA,DW45_3200的Icw为400V、65kA)。
万能式断路器,绝大部分都具有过载长延时、短路短延时和短路瞬动的三段保护功能,能实现选择性保护,因此大多数主干线(包括变压器的出线端)都采用它作主开关,因为主干线切除故障电流后更换断路器要慎重,主干线停电要影响一大片用户,所以发生短路故障时要求两个CO,而且要求继续承载一段时间的额定电流,因此万能式断路器偏重于它的Icu 值;而使用在支路上的塑壳式断路器,经过极限短路电流的分断和再次的合、分后,已完成其使命,它不再承载额定电流,可以更换新的(停电的影响较小),一般只注重其Ics值。
但是,无论是万能式或塑壳式断路器,都有必须具备Icu和Ics这两个重要的技术指标。
只有Ics值在两类断路器上表现略有不同,塑壳式的最小允许Ics可以是25%Icu,万能式最小允许Ics是50%Icu,有些断路器应用的设计人员,按其所计算的线路预期短路电流选择断路器时,以断路器的额定运行短路分断能力来衡量,由此判定某种断路器(此断路器的极限短路能力大于线路预期短路电流,而运行短路分断能力则低于计算电流)为不合格。
这是一个误解。
接通电流试验(“C”试验),是以峰值电流来考核触头和其他导电体承受的电动斥力和热稳定性的能力,有什么样的有效值电流(分断电流),在其相应的功率因数下,便有什么样的峰值电流,使用者毋须去考虑峰值电流这个参数。
如何来选择断路器的分段能力
按线路预期短路电流的计算来选择断路器的分断能力
精确的线路预期短路电流的计算是一项极其繁琐的工作,因此便有一些误差不很大而工程上可以被接受的简捷计算方法:
1.对于10/0.4KV电压等级的变压器,可以考虑高压侧的短路容量为无穷大(10KV侧的短路容量一般为200~400MVA甚至更大,因此按无穷大来考虑,其误差不足10%)。
2.GB 50054-95《低压配电设计规范》的2.1.2条规定:“当短路点附近所接电动机的额定电流之和超过短路电流的1%时,应计入电动机反馈电流的影响”,若短路电流为30KA,取其1%,应是300A,电动机的总功率约在150KW,且是同时启动使用时此时计入的反馈电流应是6.5∑In。
3.变压器的阻抗电压UK表示变压器副边短接(路),当副边达到其额定电流时,原边电压为其额定电压的百分值。
因此当原边电压为额定电压时,副边电流就是它的预期短路电流。
4.变压器的副边额定电流=Se/1.732U式中Se为变压器的容量(KVA),Ue为副边额定电压(空载电压),在10/0.4KV时Ue=0.4KV因此简单计算变压器的副边额定电流应是:1.44~.50Se。
5.按(3)对Uk的定义,副边的短路电流(三相短路)为I(3)对Uk的定义,副边的短路电流(三相短路)为I(3)=Ie/Uk,此值为交流有效值。
6.在相同的变压器容量下,若是两相之间短路,则I(2)=1.732I(3)/2=0.866I(3)以上计算均是变压器出线端短路时的电流值,这是最严重的短路事故。
如果短路点离变压器有一定的距离,考虑到线路阻抗,短路电流将减小。
例如SL7系列变压器(配导线为三芯铝线电缆),容量为200KVA,变压器出线端短路时,三相短路电流I(3)为7210A。
短路点离变压器的距离为100m时,短路电流I(3)降为4740A;当变压器容量为100KVA时其出线端的短路电流为3616A。
离变压器的距离为100m处短路时,短路电流为2440A。
远离100m时短路电流分别为0m的65.74%和6
7.47%。
所以,用户在设计时,应计算安装处(线路)的额定电流和该处可能出现的最大短路电流。
并按以下原则选择断路器:因此,在选择断路器上,不必把余量放得过大,以免造成浪费。
例如一台容量为1600kVA的变压器,其副边的额定电流为2312A,阻抗电压百分数uK取6%,最大预期短路电流应为38.5kA,作保护用的断路器额定短路分断能力应是³40kA,若选DW15 -2500Y的2500A或DW45 - 3200的2500A作主开关是能胜任的。
由于现代的动力中心的变压器与配电柜相距很近,甚至安装在一起,因此即使是支路,额定电流在100A,它的预期短路电流也是很大的。
因此,也要求线路中的塑壳断路器的短路分断能力应达到380V、40kA。
有文章断定某一新型塑壳式断路器(壳架等级电流160A,Icu380V、50kA,Ics380V、35kA)不能选用,理由是它的Ics仅35kA,小于线路预期电流38.5kA。
这是一种误解。
该型号断路器使用于支路,即使通过支路的短路电流为38.5kA,但此断路器Icu大50kA,完全可以胜任。
因此判断塑壳式断路器能否胜任某一线路保护开关,是看它的Icu能否大于线路的预期短路电流。
而它的Ics即使小一点,也无碍于它的作用的发挥。
因为短路事故多种多样,例如两相短路(其短路电流为三相短路值的二分之根号三),或者离电源较远的地方,如50m、100m,即使是三相短路,由于阻抗的原因,三相短路时,事故电流大约是50%~60%的三相最大预期值。