集合 R 满足完备性,即任意 R 的有非空子集S ( S∈R,S≠Φ),若 S 在 R 内有上界,那么 S 在 R 内有上确界。
最后一条是区分实数和有理数的关键。
例如所有平方小于 2 的有理数的集合存在有理数上界,如 1.5;但是不存在实数上界(因为
不是有理数)。
实数通过上述性质唯一确定。
更准确的说,给定任意两个有序域 R1 和 R2,存在从 R1 到 R2 的唯一的域同构,即代数学上两者可看作是相同的。
5相关性质
基本运算
实数可实现的基本运算有加、减、乘、除、乘方等,对非负数(即正数和0)还可以进行开方运算。
实数加、减、乘、除(除数不为零)、平方后结果还是实数。
任何实数都可以开奇次方,结果仍是实数,只有非负实数,才能开偶次方其结果还是实数。
4
图册
四则运算封闭性
实数集R对加、减、乘、除(除数不为零)四则运算具有封闭性,即任意两个实数的和、差、积、商(除数不为零)仍然是实数。
有序性
实数集是有序的,即任意两个实数a、b必定满足下列三个关系之一:
a<b,a=b,a>b.
传递性
实数大小具有传递性,即若a>b,b>c,则有a>c.
阿基米德性
实数具有阿基米德(Archimedes)性,即对任何a,b ∈R,若b>a>0,则存在正整数n,使得na>b.
稠密性
实数集R具有稠密性,即两个不相等的实数之间必有另一个实数,既有有理数,也有无理数.
唯一性
如果在一条直线(通常为水平直线)上确定O作为原点,指定一个方向为正方向(通常把指向右的方向规定为正方向),并规定一个单位长度,则称此直线为数轴。
任一实数都对应与数轴上的唯一一个点;反之,数轴上的每一个点也都唯一的表示一个实数。
于是,实数集R与数轴上的点有着一一对应的关系。
完备性
作为度量空间或一致空间,实数集合是个完备空间,它有以下性质:
一.所有实数的柯西序列都有一个实数极限。
有理数集合就不是完备空间。
例如,(1, 1.4, 1.41, 1.414, 1.4142,
1.41421, ...) 是有理数的柯西序列,但没有有理数极限。
实际上,它有个实数极限√2。
实数是有理数的完备化——这亦是构造实数集合的一种方法。
极限的存在是微积分的基础。
实数的完备性等价于欧几里德几何的直线没有“空隙”。
二.“完备的有序域”
实数集合通常被描述为“完备的有序域”,这可以几种解释。
首先,有序域可以是完备格。
然而,很容易发现没有有序域会是完备格。
这是由于有序域没有最大元素(对任意元素 z,z + 1 将更大)。
所以,这里的“完备”不是完备格的意思。
另外,有序域满足戴德金完备性,这在上述公理中已经定义。
上述的唯一性也说明了这里的“完备”是指戴德金完备性的意思。
这个完备性的意思非常接近采用戴德金分割来构造实数的方法,即从(有理数)有序域出发,通过标准的方法建立戴德金完备性。
这两个完备性的概念都忽略了域的结构。
然而,有序群(域是种特殊的群)可以定义一致空间,而一致空间又有完备空间的概念。
上述完备性中所述的只是一个特例。
(这里采用一致空间中的完备性概念,而不是相关的人们熟知的度。