当前位置:文档之家› 微分方程模型-动态模型

微分方程模型-动态模型


kk 21 13
几种常见的给药方式
给药速率 f0(t) 和初始条件
(1).快速静脉注射
t=0 瞬时注射剂量D0
c1 (t) c2 (t)
(
V1 V2
k12 k12c1
k13 )c1 k c 21 2
V2 V1
k c 21 2
f0 (t) V1
的药物进入中心室,血 药浓度立即为D0/V1
K w L 1 r
w , r ,
K/L
(3) 经济(生产率)增长的条件 (动态模型)
要使 Q(t) 或 Z(t)=Q(t)/L(t) 增长, K(t), L(t)应满足的条件
模型 • 投资增长率与产值成正比 假设 (用一定比例扩大再生产)
dK Q, 0
dt
• 劳动力相对增长率为常数
di i
dt i(0) i0
i(t) i0et
ti ?
若有效接触的是病人, 则不能使病人数增加
必须区分已感染者(病 人)和未感染者(健康人)
模型2
假设
建模
区分已感染者(病人)和未感染者(健康人)
1)总人数N不变,病人和健康
人的 比例分别为 i(t), s(t)
SI 模型
2)每个病人每天有效接触人数 ~ 日
f
0
Lg
(
y)
dy dt
dL f0g( y) dt
f0Ly 2 1[ f0 (1 ) y1 ]
dQ dt
0
1
K 0 / K0
e(1 )t
1
1
( A)
0 A成立
0
当t
1
(1 )
ln(1 )(1
K 0 / K0
),
A成立
(3) 经济增长的条件
每个劳动力的产值 Z(t)=Q(t)/L(t)增长 dZ/dt>0
dL L
dt
L(t) L0et
Q f Lg( y) g(y) y 0
dK f Ly
dt
0
y K , K Ly L
dK L dy Ly
dt dt
dK f Ly
dt
0
dK L dy Ly
dt dt
dy y f y
dt
0
Bernoulli方程
1
y(t)
f 0
( y1
0
f 0
每个劳动 力的产值
z
Q L
每个劳动 力的投资
y
K L
模型假设 z 随着 y 的增加而增长,但增长速度递减
z Q / L f0g( y) g(y) y , 0 1
Q f0L(K / L)
g(y)
Q(K, L) f0K L1 Douglas生产函数
Q , Q 0 K L
2Q 2Q K 2 , L2 0
含义?
0
y
(1). Douglas生产函数 Q(K, L) f0 K L1
QK ~ 单位资金创造的产值 KQK , LQL 1
QL ~ 单位劳动力创造的产值 Q
Q
KQK LQL Q
~ 资金在产值中的份额 1- ~劳动力在产值中的份额
更一般的道格拉斯(Douglas)生产函数 Q(K, L) f0K L , 0 , 1, f0 0
• 本节讨论二室模型——中心室(心、肺、肾等)和 周边室(四肢、肌肉等)
模型假设
• 中心室(1)和周边室(2),容积不变
• 药物从体外进入中心室,在二室间 相互转移,从中心室排出体外
• 药物在房室间转移速率及向体外排除速率, 与该室血药浓度成正比
模型建立
x (t) ~ 药量 i
c (t) ~ 浓度 i
SIR模型
di dt
si
i
ds dt
si
di
ds
1
s
1
i
1
i(s)
(s0
i0
)
s
1
lns si来自s s0i 0
D
0
i(0) i0 , s(0) s0
P4
s(t)单调减相轨线的方向 im s 1/ , i im t , i 0
P2
P1
P3
s满足
s0
i0 s
1
ln
s s0
0
微分方程模型
1 传染病模型 2 经济增长模型 3 药物在体内的分布与排除 4 人口预测和控制
动态 模型
• 描述对象特征随时间(空间)的演变过程 • 分析对象特征的变化规律 • 预报对象特征的未来性态 • 研究控制对象特征的手段
微分 方程 建模
• 根据函数及其变化率之间的关系确定函数 • 根据建模目的和问题分析作出简化假设 • 按照内在规律或用类比法建立微分方程
吸收室
x0 (t)
中心室
f0 k01x0
x0 x0
(t ) (0)
k01 D0
x0
吸收室药量x0(t)
c1 c2
(t ) (t )
(k 12
V1 V2
k12c1
k )c 13 1
k c 21 2
V2 V1
kc 21 2
f (t) 0 V1
x (t) D ek01t
0
0
f (t) k x (t) D k ek01t
为, 且使接触的健康人致病
接触率
N[i(t t) i(t)] [s(t)]Ni(t)t
di si
dt
s(t) i(t) 1
di
dt
i(1
i)
i(0)
i 0
模型2
di
dt
i(1
i)
Logistic 模型
i
i(0) i0
1
i(t)
1
1/2
1
1 i0
1et
i0
0
tm
t=tm, di/dt 最大
di dt
i(1
i)
i
i(0) i0
~ 日接触率 1/ ~感染期
/
~ 一个感染期内每个病人的
有效接触人数,称为接触数。
模型3
di/dt
di i(1 i) i /
dt
i
>1
i0
>1
1-1/
di i[i (1 1 )]
dt
i
1
i0 di/dt < 0
0
1-1/ 1 i
0
s S0 1/ s0
1s
P1: s0>1/
0 P2: s0<1/
i(t)先升后降至 i(t)单调降至0
传染病蔓延 1/ 传染病不蔓延 ~阈

模型4
预防传染病蔓延的手段
SIR模型
传染病不蔓延的条件——s0<1/ • 提高阈值 1/ 降低 (=/)
,
(日接触率) 卫生水平
(日治愈率) 医疗水平
si
消去dt
/
di
ds
1
s
1
i
s s0
i 0
相轨线
i(0) i0 , s(0) s0 相轨线 i(s) 的定义域
i(s)
(s0
i
i0 )
s
1
ln
s s0
D {(s,i) s 0, i 0, s i 1} 1
在D内作相轨线 i(s)
的图形,进行分析
D 0
s
1
模型4 相轨线 i(s) 及其分析
V ~ 容积 i
i 1,2
f (t) 0
给药
中心室
c (t), x (t)
1
1
V 1
k 12
k21
周边室
c (t), x (t)
2
2
V 2
k13 排除
x1(t) k12 x1 k13 x1 k21x2 f0 (t)
x2 (t) k12 x1 k21x2
f0 ~ 给药速率
模型建立
xi (t) Vici (t), i 1,2
f (t) k , c (0) 0, c (0) 0 c1(t)
c2 (t)
(k 12
V1 V2
k12c1
k )c 13 1
k c 21 2
V2 V1
kc 21 2 0
f (t) 0 V1
0
1
2
c1 (t)
A et 1
B et 1
k0 k13V1
,
0t T
c2 (t)
A et 2
t
tm
1
ln
1 i0
1
tm~传染病高潮到来时刻 t i 1 ?
(日接触率) tm
病人可以治愈!
模型3
传染病无免疫性——病人治愈成 为健康人,健康人可再次被感染 SIS 模型
增加假设 3)病人每天治愈的比例为 ~日治愈率
建模 N[i(t t) i(t)] Ns(t)i(t)t Ni(t)t
N[s(t t) s(t)] Ns(t)i(t)t
di
dt
si
i
ds
dt
si
无法求出 i(t), s(t)
的解析解
i(0) i0 , s(0) s0
在相平面 s ~ i 上
研究解的性质
i0 s0 1(通常r(0) r0很小)
模型4
SIR模型
di dt
si
i
ds dt
c1 (t) (k12 k13 )c1
c2 (t)
V 1
V 2
k12 c1
k c 21 2
V 2
V 1
k c 21 2
相关主题