当前位置:文档之家› 温度采集系统课程设计报告

温度采集系统课程设计报告

1、设计目的
1)查资料了解8255A和ADC0809AD转换器的工作原理
2)原理图设计,用PROTEL画出原理图
3)软件设计,给出流程图及源代码并加注释
2、所用设备
1)8088CPU
2)DS18B20温度传感器
3)A/D570转换器
4)8255A可编程并行接口
5)3片LED显示
6)74LS138译码器
3、设计内容及步骤
以8088 CPU 为核心设计一个温度采集系统,系统可以实现一路温度的采集,在3位LED显示器上显示当前温度。

本设计所用器件主要有传感器,A/D转换器,8088CPU,可编程并行接口8255,LED显示器等。

首先传感器把所测的温度转换为电压,输入A/D转换器中进行转换,然后再把得到的二进制数经过CPU在LED上显示出来系统总体方案按照设计要求我们把传感器选择DS18B20,A/D转换采用AD570,把温度传感器采集过来的电压信号直接传给A/D 转换器,然后通过8路数据接入8255可编程芯片,经微处理器8088处理后输出,通过LED显示当前采集的温度值。

图-1 系统框图
4、程序设计(各个软件模块设计和流程图)
4.1温度采集DS18B20的读数据流程图
图-2 温度采集DS18B20的读数据流程图4.2 处理温度BCD码流程图
图-3 处理温度BCD码流程图
4.3 显示数据刷新流程图
图-4 显示数据刷新流程图
4.4系统总的流程图
图-5系统总的流程图
5、硬件设计
5.1温度采集模块
温度采集部分运用DS18B20传感器,其测温系统简单,测温精度高,连接方便,占用口线少,转换速度快,与微处理器的接口简单,给硬件设计工作带来了极大的方便,能有效地降低成本,缩短开发周期。

5.1.1 DS18B20简介
(1)独特的单线接口方式:DS18B20与微处理器连接时仅需要一条口线即可实现微处理器与DS18B20的双向通讯。

(2)在使用中不需要任何外围元件。

(3)可用数据线供电,电压范围: 3.0—5.5 V。

(4)测温范围:-55 — 125 ℃。

固有测温分辨率为0.5 ℃。

(5)通过编程可实现9—12位的数字读数方式。

(6)用户可自设定非易失性的报警上下限值。

(7)支持多点组网功能,多个DS18B20可以并联在惟一的三线上,实现多点测温。

5.1.2 DS18B20的内部结构
(1) 64 b闪速ROM的结构如下:
开始8位是产品类型的编号,接着是每个器件的惟一的序号,共有48位,最后8位是前56位的CRC校验码,这也是多个DS18B20可以采用一线进行通信的原因。

(2) 非易市失性温度报警触发器TH和TL,可通过软件写入用户报警上下限。

(3) 高速暂存存储器
DS18B20温度传感器的内部存储器包括一个高速暂存RAM和一个非易失性的可电擦除的E2RAM。

后者用于存储TH,TL值。

数据先写入RAM,经校验后再传给E2RAM。

而配置寄存器为高速暂存器中的第5个字节,他的内容用于确定温度值的数字转换分辨率,DS18B20工作时按此寄存器中的分辨率将温度转换为相应精度的数值。

该字节各位的定义如下:
低5位一直都是1,TM是测试模式位,用于设置DS18B20在工作模式还是在测试模式。

在DS18B20出厂时该位被设置为0,用户不要去改动,R1和R0决
定温度转换的精度位数,即是来设置分辨率,如表1所示(DS18B20出厂时被设置为12位)。

设定的分辨率越高,所需要的温度数据转换时间就越长。

因此,在实际应用中要在分辨率和转换时间权衡考虑。

高速暂存存储器除了配置寄存器外,还有其他8个字节组成,其分配如下所示。

其中温度信息(第1,2字节)、TH和TL值第3,4字节、第6~8字节未用,表现为全逻辑1;第9字节读出的是前面所有8个字节的CRC码,可用来保证通信正确。

当DS18B20接收到温度转换命令后,开始启动转换。

转换完成后的温度值就以16位带符号扩展的二进制补码形式存储在高速暂存存储器的第1,2字节。

单片机可通过单线接口读到该数据,读取时低位在前,高位在后,数据格式以0062 5 ℃/LSB形式表示。

温度值格式如下:
对应的温度计算:当符号位S=0时,直接将二进制位转换为十进制;当S=1时,先将补码变换为原码,再计算十进制值。

表2是对应的一部分温度值。

DS18B20完成温度转换后,就把测得的温度值与TH,TL作比较,若T>TH或T <TL,则将该器件内的告警标志置位,并对主机发出的告警搜索命令作出响应。

因此,可用多只DS18B20同时测量温度并进行告警搜索。

(4) CRC的产生在64 b ROM的最高有效字节中存储有循环冗余校验码(CRC)。

主机根据ROM的前56位来计算CRC值,并和存入DS18B20中的CRC值做比较,以判断主机收到的ROM数据是否正确
5.1.3 DS18B20的工作原理
DS18B20 的温度检测与数字数据输出全集成于一个芯片之上,从而抗干扰力更强。

其一个工作周期可分为两个部分,即温度检测和数据处理。

在讲解其工作流程之前我们有必要了解 18B20的内部存储器资源。

18B20 共有三种形态的存储器资源,它们分别是: ROM 只读存储器,用于存放 DS18B20ID 编码,其前 8 位是单线系列编码(DS18B20 的编码是19H),后面48 位是芯片唯一的序列号,最后 8位是以上 56的位的 CRC码(冗余校验)。

数据在出产时设置不由用户更改。

DS18B20 共 64 位 ROM。

RAM 数据暂存器,用于内部计算和数据存取,数据在掉电后丢失,DS18B20 共9 个字节 RAM,每个字节为 8 位。

图-6 A/D转换电路图
5.3 数据处理部分
本部分采用8255A可编程接口与8088处理器共同作用,进行数据运算,其硬件连接图如下:
图-7 数据处理电路图
5.4 数据显示电路部分
数据显示用3片LED数码管,其电路连接图如下,图中103为排阻1000K。

图-8 数据显示电路图
5.5系统总电路图
图-9 系统总电路图。

相关主题