三重四级杆质谱仪原理详解
空间串联多级质谱:QQQ
• QQQ质谱仪对于液相色谱-质谱/质谱应用来说是
权威的分析工具,特别是需要精确定量时。
• 可以通过三重四极杆质谱仪可以进行如下几类试验:
– 子离子扫描 – 母离子扫描 – 中性丢失扫描 – 单个反应监测 – 多重反应监测
QQQ多级质谱:子离子扫描
• Q1选择了某一特定质量的母离子,Q2碰撞池产生碎片
诱 导解离(CID)。
对所得的碎片离子进行质量分析。 碎片离子被用于对原来的分子离子的结构判断。 多质谱分析可用于缩氨酸顺序,碳水化合物的结构特性,
低聚核苷酸以及酯类药物类的分子等的测定。
什么是碰撞诱导解离(CID)?
这是一个通过中性分子的碰撞把能量传递给离子的过程。
这种能量传递足以使分子键断裂和所选择的离子重排。
酸性氯代除草剂的基本知识
• 常用于除去草地和谷类农作物中阔叶杂草 • 潜在的地下水污染物 • 公众的误用 • 需要对痕量级别定量
传统方法
• 液-液萃取 • 重氮甲烷衍生化 • 气相色谱方法和选择性检测器(例如电子捕获检测器) • 仪器二次运行确认 • 存在问题 • 溶剂的过量使用 • 问题数据的解释 • 甲基化试剂的安全关注
三重四级杆质谱仪原理
内容
质量分析
– 基础知识 – 质量分析器的性能特点
• 分辨率 • 准确率 • 质量范围
多级质量分析
– 什么是多级质谱? – 多级质谱如何工作? – 碰撞诱导解离(CID) – 采集方式
质量分析: 基本基础知识
在质量分析器里所产生的离子是根据他们的质荷比(m/z). 进行分离的
其他的排除出离子阱。 • 在与惰性气体原子(氦,氩或者氮)碰撞后,所选择的离
子被激活,所产生的更大动能使它们变成碎片。 • 所得的碎片离子通过分析后,得到碎片离子谱图。
时间串联的多级质谱:优点
• 离子阱的一个优点就是它们能够分离 出某种离子,把其他的离子排除出离 子阱。
• 被分离的离子能够通过CID的方式变 成碎片然后被测定。
离子被激活,所产生的更大动能使它们变成碎片。 所得的碎片离子通过分析后,得到碎片离子谱图。
时间串联的多级质谱:优点
• 离子阱的一个优点就是它们能
够分离出某种离子,把其他的离 子排除出离子阱。
• 被分离的离子能够通过CID的方
式变成碎片然后被测定。
• 质谱/质谱试验能快速进行。
• 离子阱允许对碎片离子和碎片片
采集类型:QQQ质谱仪
三重四极杆: SRM 或MRM
多反应监测(MRM)
QQQ 应用
• 采用QQQ,分析者可以采用最少的样品制备步骤。 • 经常用于少量化合物的高通量定量分析,而 不用
于大量化合物同时高通量分析。。 • 一些例子:
•食品中的农药和除草剂 • 人类体液中的违禁药物 • 地表水的药物 • 生物基体中的药物
时间串联多级质量分析是通过同一个分析器实现的,分 离出所需的离子,使之断裂,并分析碎片离子。
时间串联的多级质谱: 离子阱(质谱n)
离子在离子阱中静电捕获(无线电频率场见下图) 通过改变阱里的电场,从而选择特定的离子留在阱里,
把其他的排除出离子阱。 在与惰性气体原子(氦,氩或者氮)碰撞后,所选择的
三重四极杆不是最好的获取质谱图的 仪器,平行测量的质谱系统会更好些:
• 三重四极杆质谱/质谱不如离子阱质谱仪( TRAPS )
质量分析器的性能特点
• 质量范围
– 不同类型质量分析器质荷比的范围。四极杆分析器典型 的扫描范围高达3000 m/z。
多级质量分析——质谱/质谱方式的介绍
多级质量分析
通常通过由惰性气体分子,例如氮气,氩气或氦气,碰撞 所选择的分子离子来实现的。这个过程就是所谓的碰撞
• 分辨率 • 准确率 • 质量范围
• 多级质量分析 – 什么是多级质谱? – 多级质谱如何工作? – 碰撞诱导解离(CID) – 采集方式
质量分析: 基本基础知识
• 在质量分析器里所产生的离子是根据他们的质荷 比(m/z).进行分离的
质荷比
与小分子不同,一个更大分子的同位素质量簇中丰度最大的离子可能不 是最低同位素质量。注意这个变化是同位素分布,它将影响你分析的结果。
一个单四极杆质谱仪
四极杆质量过滤器
合成电压在两个对杆上数量是相同的,极性 是相反的。
四极杆质量过滤器如何工作的?
四极杆质量过滤器稳定性图表
马修稳定图
选择性离子监测与全扫描对比
三重四极杆与其他液相/质谱联用技术的比较
– 在质谱应用领域里三重四极杆是最灵敏和定量重现性最好 的仪器。
– 在质谱应用领域里三重四极杆在执行中性丢失扫描和母子 扫描模
为什么使用HPLC/MS/MS?
• 不需进行衍生化。 • 在单个分析中实现确认定量。 • 在复杂很脏的基体中的低检测限
试结果。
无基体效应(土壤)
在380微升每个土壤萃取物中注射进20微升混标
三重四级杆质谱仪原理
内容
• 质量分析 – 基础知识 – 质量分析器的性能特点
段进行多重质谱/质谱(aka MSn) 实验,以获得更多的结构信息。
• 另外一个优点就是它们能够富
集离子,以提供更好的离子信号。
时间串联的多级质谱:缺点
• 缺乏三重四极杆(QQQ)类型的母离子扫描和和中性丢
失 扫描的高灵敏度。
• 因为空间电荷效应的影响,离子阱的 动态范围有限。因
为如果过多的离子积累在阱里,它们的电荷相斥会对仪器 的分辨率和定量分析造成有害的影响。
空间串联的多级质谱:通过QQQ质量分析器完成
• 空间串联的多级质谱分析通过连续的质量分析 器 实现,例如QQQ。
空间串联多级质谱:QQQ
• 必须通过连续放置多个分析器来实 现空间串联的多级质谱分析。
• 对于QQQ,每个分析器有以下单独的作用: – 第一个四极杆(Q1)根据设定的质荷比范围扫描和选择所需的离 子。 – 第二个四极杆(Q2) ,也称碰撞池,用于聚集和传送离子。在 所选择离子的飞行途中,引入碰撞气体,例如氮气等。 – 第三个四极杆(Q3)用于分析在碰撞池中产生的碎片离子。
• 质谱/质谱试验能快速进行。
• 离子阱允许对碎片离子和碎片片段进 行多重质谱/质谱(aka MSn)实验,以 获得更多的结构信息。
• 另外一个优点就是它们能够富集离 子,以提供更好的离子信号。
时间串联的多级质谱:缺点
• 缺乏三重四极杆(QQQ)类型的母离子扫描和和中性丢 失 扫描的高灵敏度。
• 因为空间电荷效应的影响,离子阱的 动态范围有限。因 为如果过多的离子积累在阱里,它们的电荷相斥会对仪器 的分辨率和定量分析造成有害的影响。
用主要的分裂机理方式解释CID谱图。
多级质谱分析
两种型号的质谱/质谱 时间串联的质谱/质谱
或 空间串联的质谱/质谱
时间串联多级质谱分析:通过离子阱质量分析器实现
时间串联多级质量分析是通过同一个分析器实现的,分 离出所需的离子,使之断裂,并分析碎片离子。
时间串联的多级质谱: 离子阱(质谱n)
• 离子在离子阱中静电捕获(无线电频率场见下图) • 通过改变阱里的电场,从而选择特定的离子留在阱里,把
离子,然后在Q3中分析。此过程产生典型的质谱质谱碎 片谱图。
第一个四极杆在选择性离子监测模式,第二个在全扫描监测模式
QQQ多级质谱:母离子扫描
• 在母离子扫描中,Q1测定母离子,Q3测定某个特定
的碎片离子,因此可在非常复杂的混合物中监测某种 特定的分子。
• 在下面的例子中,睾丸激素在母碎片(m/z 367)中
碎片m/z 97得到选择性监测,具有极高的灵敏度和精 确的定量分析。
QQQ多级质谱:中性丢失扫描
在QQQ中进行中性丢失扫描,Q1和Q3分析器的结合使灵 敏度 和选择性得到最大化。Q1/Q3中性丢失扫描可监测 母离子特定的中性丢失,例如缩氨酸磷酸盐中一个磷酸根 的丢失。在这个例子中,Q1和Q3的扫描得到母离子的谱 图,这张谱图是母离子为了磷酸化,丢失了碎片98而得到 的。
什么是碰撞诱导解离(CID)?
这是一个通过中性分子的碰撞把能量传递给离子的 过程。
这种能量传递足以使分子键断裂和所选择的离子重 排。
❖ 为什么它那么重要?
在70年代初期McLafferty (JACS, 95, 3886, 1973) 论证了从离子观测得的键断裂和重排,表明了CID是 中性分子的分子结构的典型代表。 ❖ 结构阐述
一个单四极杆质谱仪
四极杆质量过滤器
合成电压在两个对杆上数量是相同的,极性 是相反的。
四极杆质量过滤器如何工作的?
四极杆质量过滤器稳定性图表
马修稳定图
选择性离子监测与全扫描对比
三重四极杆与其他液相/质谱联用技术的比较
– 在质谱应用领域里三重四极杆是最灵敏 和定量重现性最好的仪器。
– 在质谱应用领域里三重四极杆在执行中 性丢失扫描和母子扫描模式具有最好的灵 敏性和准确性。
质量分析器的性能特点
• 分辨率= M/ΔM 分辨率为200时,准确率是~
2000ppm 分辨率为2500时,准确率是~
100ppm
准确率(ppm级误差的例子)
一个质量为1000 道尔顿的化合物
1000 ± 2.0 Da (or ± 2000 ppm) 1000 ± 0.5 Da (or ± 500 ppm) 1000 ± 0.1 Da (or ± 100 ppm) 1000 ± 0.01 Da (or ± 10 ppm) 1000 ± 0.002 Da (or ± 2 ppm)
一个质量为1000 道尔顿的化合物 1000 ± 2.0 Da (or ± 2000 ppm) 1000 ± 0.5 Da (or ± 500 ppm) 1000 ± 0.1 Da (or ± 100 ppm) 1000 ± 0.01 Da (or ± 10 ppm) 1000 ± 0.002 Da (or ± 2 ppm)