abaner拉伸试验报告[键入文档副标题] [键入作者姓名][选取日期] [在此处键入文档的摘要。
摘要通常是对文档内容的简短总结。
在此处键入文档的摘要。
摘要通常是对文档内容的简短总结。
] 拉伸试验报告一、试验目的1、测定低碳钢在退火、正火和淬火三种不同热处理状态下的强度与塑性性能2、测定低碳钢的应变硬化指数和应变硬化系数二、试验要求:按照相关国标标准(gb/t228-2002:金属材料室温拉伸试验方法)要求完成试验测量工作。
三、引言低碳钢在不同的热处理状态下的力学性能是不同的。
为了测定不同热处理状态的低碳钢的力学性能,需要进行拉伸试验。
拉伸试验是材料力学性能测试中最常见试验方法之一。
试验中的弹性变形、塑性变形、断裂等各阶段真实反映了材料抵抗外力作用的全过程。
它具有简单易行、试样制备方便等特点。
拉伸试验所得到的材料强度和塑性性能数据,对于设计和选材、新材料的研制、材料的采购和验收、产品的质量控制以及设备的安全和评估都有很重要的应用价值和参考价值通过拉伸实验测定低碳钢在退火、正火和淬火三种不同热处理状态下的强度和塑形性能,并根据应力-应变曲线,确定应变硬化指数和系数。
用这些数据来进行表征低碳钢的力学性能,并对不同热处理的低碳钢的相关数据进行对比,从而得到不同热处理对低碳钢的影响。
拉伸实验根据金属材料室温拉伸试验方法的国家标准,制定相关的试验材料和设备,试验的操作步骤等试验条件。
四、试验准备内容具体包括以下几个方面。
1、试验材料与试样(1)试验材料的形状和尺寸的一般要求试样的形状和尺寸取决于被试验金属产品的形状与尺寸。
通过从产品、压制坯或铸件切取样坯经机加工制成样品。
但具有恒定横截面的产品,例如型材、棒材、线材等,和铸造试样可以不经机加工而进行试验。
试样横截面可以为圆形、矩形、多边形、环形,特殊情况下可以为某些其他形状。
原始标距与横截面积有l?ks0关系的试样称为比例试样。
国际上使用的比例系数k的值为5.65。
原始标距应不小于15mm。
当试样横截面积太小,以至采用比例系数k=5.65的值不能符合这一最小标距要求时,可以采用较高的值,或者采用非比例试样。
本试验采用r4试样,标距长度50mm,直径为18mm。
尺寸公差为±0.07mm,形状公差为0.04mm。
(2)机加工的试样如果试样的夹持端与平行长度的尺寸不同,他们之间应以过渡弧相连,此弧的过渡半径的尺寸可能很重要。
试样夹持端的形状应适合试验机的夹头。
试样轴线应与力的作用线重合。
(5)原始横截面积的测定原始横截面积的测定应准确到?0.5%。
比例试样的原始标距与横截面积有l?ks0关系。
国际上使用的比例系数k的值为5.65,也可以取11.3。
本试验中试样的直径为10mm。
(6)低碳钢的热处理1)退火工艺退火是将金属和合金加热到适当温度,保持一定时间,然后缓慢冷却的热处理工艺。
退火后组织亚共析钢是铁素体加片状珠光体;共析钢或过共析钢则是粒状珠光体。
总之退火组织是接近平衡状态的组织。
退火是钢厂最常用的热处理工艺,可以达到以下目的:(1)减小钢锭的成分偏析,使成分均匀化;(2)消除铸、锻件中存在的魏氏组织或带状组织,细化晶粒,均匀组织,并消除内应力;(3)降低硬度,提高塑性,以便于切削加工;(4)改善高碳钢中碳化物的形态和分布,为淬火做好组织准备。
在本实验中,我们所检测到的退火处理后材料性能的主要变化应为硬度的降低和塑形的升高。
2)淬火工艺淬火是将金属工件加热到某一适当温度并保持一段时间,随即浸入淬冷介质中快速冷却的金属热处理工艺。
常用的淬冷介质有盐水、水、矿物油、空气等。
淬火可以提高金属工件的硬度及耐磨性,因而广泛用于各种工、模、量具及要求表面耐磨的零件(如齿轮、轧辊、渗碳零件等)。
通过淬火与不同温度的回火配合,可以大幅度提高金属的强度、韧性及疲劳强度,并可获得这些性能之间的配合(综合机械性能)以满足不同的使用要求。
将钢加热奥氏体化后以适当方式冷却获得马氏体或(和)贝氏体组织的热处理工艺称为淬火。
马氏体最主要的特性之一就是高强度和高硬度。
在本实验中,我们所检测到的淬火处理后材料性能的主要变化应为硬度的升高。
3)正火工艺正火是将钢件加热到ac3(或acm)以上30~50℃,保温适当的时间后,在静止的空气中冷却的热处理工艺。
把钢件加热到ac3以上100~150℃的正火则称为高温正火。
对于中、低碳钢的铸、锻件正火的主要目的是细化组织。
与退火相比,正火后珠光体片层较细、铁素体晶粒也比较细小,因而强度和硬度较高。
对于低碳钢工件,由于退火后硬度太低,切削加工中易粘刀,光洁度交叉,效率低,故用正火来提高其硬度,改善其切削加工性能。
[1] 在本实验中,我们所检测到的正火处理后材料性能的主要变化应为硬度的升高。
(7)试样的制备对于名义直径10mm的试样,尺寸公差为0.03mm。
对于满足上述机加工条件的名义直径10mm的试样,沿其平行长度的最大直径和最小直径之差不应超过0.04mm。
篇二:金属材料的室温拉伸试验实验报告(仅供参考) 金属材料的室温拉伸试验[实验目的]1、测定低碳钢的屈服强度reh 、rel及re 、抗拉强度rm 、断后伸长率a和断面收缩率z 。
2、测定铸铁的抗拉强度rm和断后伸长率a。
3、观察并分析两种材料在拉伸过程中的各种现象(包括屈服、强化、冷作硬化和颈缩等现象),并绘制拉伸图。
4、比较低碳钢(塑性材料)与铸铁(脆性材料)拉伸机械性能的特点。
[使用设备]万能试验机、游标卡尺、试样分划器或钢筋标距仪 [试样] 本试验采用经机加工的直径d =10 mm的圆形截面比例试样,其是根据国家试验规范的规定进行加工的。
它有夹持、过渡和平行三部分组成(见图2-1),它的夹持部分稍大,其形状和尺寸应根据试样大小、材料特性、试验目的以及试验机夹具的形状和结构设计,但必须保证轴向的拉伸力。
其夹持部分的长度至少应为楔形夹具长度的3/4(试验机配有各种夹头,对于圆形试样一般采用楔形夹板夹头,夹板表面制成凸纹,以便夹牢试样)。
机加工带头试样的过渡部分是圆角,与平行部分光滑连接,以保证试样破坏时断口在平行部分。
平行部分的长度lc按现行国家标准中的规定取lo+d ,lo是试样中部测量变形的长度,称为原始标距。
图2-1 机加工的圆截面拉伸试样 [实验原理] 按我国目前执行的国家gb/t 228—2002标准——《金属材料室温拉伸试验方法》的规定,在室温10℃~35℃的范围内进行试验。
将试样安装在试验机的夹头中,然后开动试验机,使试样受到缓慢增加的拉力(应根据材料性能和试验目的确定拉伸速度),直到拉断为止,并利用试验机的自动绘图装置绘出材料的拉伸图(图2-2所示)。
应当指出,试验机自动绘图装置绘出的拉伸变形δl主要是整个试样(不只是标距部分)的伸长,还包括机器的弹性变形和试样在夹头中的滑动等因素。
由于试样开始受力时,头部在夹头内的滑动较大,故绘出的拉伸图最初一段是曲线。
(a)低碳钢拉伸曲线图(b)铸铁拉伸曲线图图2-2 由试验机绘图装置绘出的拉伸曲线图1、低碳钢(典型的塑性材料)当拉力较小时,试样伸长量与力成正比增加,保持直线关系,拉力超过fp后拉伸曲线将由直变曲。
保持直线关系的最大拉力就是材料比例极限的力值fp 。
在fp的上方附近有一点是fc,若拉力小于fc而卸载时,卸载后试样立刻恢复原状,若拉力大于fc后再卸载,则试件只能部分恢复,保留的残余变形即为塑性变形,因而fc是代表材料弹性极限的力值。
当拉力增加到一定程度时,试验机的示力指针(主动针)开始摆动或停止不动,拉伸图上出现锯齿状或平台,这说明此时试样所受的拉力几乎不变但变形却在继续,这种现象称为材料的屈服。
低碳钢的屈服阶段常呈锯齿状,其上屈服点b′受变形速度及试样形式等因素的影响较大,而下屈服点b则比较稳定(因此工程上常以其下屈服点b所对应的力值fel作为材料屈服时的力值)。
确定屈服力值时,必须注意观察读数表盘上测力指针的转动情况,读取测力度盘指针首次回转前指示的最大力feh(上屈服荷载)和不计初瞬时效应时屈服阶段中的最小力fel(下屈服荷载)或首次停止转动指示的恒定力fel(下屈服荷载),将其分别除以试样的原始横截面积(s0)便可得到上屈服强度reh和下屈服强度rel。
即reh= feh/s0 rel = fel/s0 屈服阶段过后,虽然变形仍继续增大,但力值也随之增加,拉伸曲线又继续上升,这说明材料又恢复了抵抗变形的能力,这种现象称为材料的强化。
在强化阶段内,试样的变形主要是塑性变形,比弹性阶段内试样的变形大得多,在达到最大力fm之前,试样标距范围内的变形是均匀的,拉伸曲线是一段平缓上升的曲线,这时可明显地看到整个试样的横向尺寸在缩小。
此最大力fm为材料的抗拉强度力值,由公式rm=fm/s0 即可得到材料的抗拉强度rm。
图2-3 低碳钢的冷作硬化如果在材料的强化阶段内卸载后再加载,直到试样拉断,则所得到的曲线如图2-3所示。
卸载时曲线并不沿原拉伸曲线卸回,而是沿近乎平行于弹性阶段的直线卸回,这说明卸载前试样中除了有塑性变形外,还有一部分弹性变形;卸载后再继续加载,曲线几乎沿卸载路径变化,然后继续强化变形,就像没有卸载一样,这种现象称为材料的冷作硬化。
显然,冷作硬化提高了材料的比例极限和屈服极限,但材料的塑性却相应降低。
当荷载达到最大力fm后,示力指针由最大力fm缓慢回转时,试样上某一部位开始产生局部伸长和颈缩,在颈缩发生部位,横截面面积急剧缩小,继续拉伸所需的力也迅速减小,拉伸曲线开始下降,直至试样断裂。
此时通过测量试样断裂后的标距长度lu和断口处最小直径du,计算断后最小截面积(su),由计算公式a?lu?l0l0?100% 、 z?s0?sus0?100% 即可得到试样的断后伸长率a和断面收缩率z。
2、铸铁(典型的脆性材料)脆性材料是指断后伸长率a<5%的材料,其从开始承受拉力直至试样被拉断,变形都很小。
而且,大多数脆性材料在拉伸时的应力-应变曲线上都没有明显的直线段,几乎没有塑性变形,也不会出现屈服和颈缩等现象(如图2-2b所示),只有断裂时的应力值——强度极限。
铸铁试样在承受拉力、变形极小时,就达到最大力fm而突然发生断裂,其抗拉强度也远小于低l?l碳钢的抗拉强度。
同样,由公式rm=fm/s0 即可得到其抗拉强度rm,而由公式a?l?100%则u00可求得其断后伸长率a。
[试验步骤]一、低碳钢拉伸试验 1、试样准备:为了便于观察标距范围内沿轴向的变形情况,用试样分划器或标距仪在试样标距l0 范围内每隔5 mm刻划一标记点(注意标记刻划不应影响试样断裂),将试样的标距段分成十等份。
用游标卡尺测量标距两端和中间三个横截面处的直径,在每一横截面处沿相互垂直的两个方向各测一次取其平均值,用三个平均值中最小者计算试样的原始横截面积s0(计算时s0应至少保留四位有效数字)。