2.1系统结构图如图1所示,试确定传递函数C(s)/R(s)。
G1(s)G2(s)H2(s)H1(s)R(s)C(s)__G3(s)图12132112()()()1()G G G C s R s G H G H +=++2.2系统结构图如图1所示,试确定传递函数C(s)/R(s)和C(s)/N(s)。
1212121()()1G G C s R s G G G G H =++23112()()1(1)G G C s N s G H G =++例3-10 某系统在输入信号r (t )=(1+t )1(t )作用下,测得输出响应为:t e t t c 109.0)9.0()(--+= (t ≥0)已知初始条件为零,试求系统的传递函数)(s φ。
解 因为22111)(ss s s s R +=+=)10()1(10109.09.01)]([)(22++=+-+==s s s s s s t c L s C 故系统传递函数为 11.01)()()(+==s s R s C s φ 例 3-12 设二阶控制系统的单位阶跃响应曲线如图3-34所示。
试确定系统的传递函数。
解 首先明显看出,在单位阶跃作用下响应的稳态值为3,故此系统的增益不是1,而是3。
系统模型为2223()2nn ns s s ωϕζωω=++ 然后由响应的%p M 、p t 及相应公式,即可换算出ζ、n ω。
%33334)()()(%=-=∞∞-=c c t c M p p 1.0=p t (s )由公式得 2/1%33%p M eπζζ--==20.11p n t ωζ==-4 30 0.1 t图3-34 二阶控制系统的单位阶跃响应h (t )换算求解得: 0.33ζ=、 2.33=n ω例3-18 已知系统特征方程为0161620128223456=++++++s s s s s s试求:(1)在s 右半平面的根的个数;(2)虚根。
解 如果劳斯行列表中某一行所有系数都等于零,则表明在根平面内存在对原点对称的实根,共轭虚根或(和)共轭复数根。
此时,可利用上一行的系数构成辅助多项式,并对辅助多项式求导,将导数的系数构成新行,以代替全部为零的一行,继续计算劳斯行列表。
对原点对称的根可由辅助方程(令辅助多项式等于零)求得。
劳斯行列表为6s 1 8 20 16 5s 2 12 16 4s 2 12 16 3s 0 0由于3s 行中各项系数全为零,于是可利用4s 行中的系数构成辅助多项式,即16122)(24++=s s s P求辅助多项式对s 的导数,得s s ss dP 248)(3+= 原劳斯行列表中s 3行各项,用上述方程式的系数,即8和24代替。
此时,劳斯行列表变为6s 1 8 20 5s 2 12 164s 2 12 16 3s 8 24 2s 6 16 1s 2.67 0s 16新劳斯行列表中第一列没有变号,所以没有根在右半平面。
对原点对称的根可解辅助方程求得。
令01612224=++s s得到 2j s ±=和2j s ±=例3-19 单位反馈控制系统的开环传递函数为)1)(1()(2+++=cs bs as s Ks G 试求: (1)位置误差系数,速度误差系数和加速度误差系数;(2)当参考输入为)(1t r ⨯,)(1t rt ⨯和)(12t rt ⨯时系统的稳态误差。
解 根据误差系数公式,有位置误差系数为 ∞=+++==→→)1)(1(lim)(lim 20cs bs as s Ks G K s s p速度误差系数为K cs bs as s Ks s sG K s s v =+++⋅==→→)1)(1(lim )(lim 2加速度误差系数为0)1)(1(lim )(lim 222=+++⋅==→→cs bs as s Ks s G s K s s a 对应于不同的参考输入信号,系统的稳态误差有所不同。
参考输入为)(1t r ⨯,即阶跃函数输入时系统的稳态误差为011=∞+=+=rK r e p ss参考输入为)(1t rt ⨯,即斜坡函数输入时系统的稳态误差为Kr K r e v ss ==参考输入为)(12t rt ⨯,即抛物线函数输入时系统的稳态误差为∞===22r K r e a ss 例3-20 单位反馈控制系统的开环传递函数为)1)(1(10)(21s T s T s s G ++=输入信号为r (t )=A+ωt ,A 为常量,ω=0.5弧度/秒。
试求系统的稳态误差。
解 实际系统的输入信号,往往是阶跃函数、斜坡函数和抛物线函数等典型信号的组合。
此时,输入信号的一般形式可表示为221021)(t r t r r t r ++=系统的稳态误差,可应用叠加原理求出,即系统的稳态误差是各部分输入所引起的误差的总和。
所以,系统的稳态误差可按下式计算:av p ss K rK r K r e 2101+++=对于本例,系统的稳态误差为vp ss K K A e ω++=1本题给定的开环传递函数中只含一个积分环节,即系统为1型系统,所以∞=p K10)1)(1(10lim )(lim 210=++⋅==→→s T s T s s s sG K s s v系统的稳态误差为05.0105.0101011===+∞+=++=ωωωA K K A e v p ss例3-23 设复合控制系统如图3-38所示。
其中1221==K K ,s T 25.02= ,132=K K试求 )(1)2/1()(2t t t t r ++=时,系统的稳态误差。
解 闭环传递函数)1(22+s T s KK 1R (s )图3-38 复合控制系统24)5.0(41)(221222113+++=++⎪⎪⎭⎫ ⎝⎛+=s s s K K s s T K K s K K s φ 等效单位反馈开环传递函数2)12(2)(1)()(s s s s s G +=-=φφ表明系统为II 型系统,且2==K K a当)(1)2/1()(2t t t t r ++=时,稳态误差为5.0/1==a ss K e例4-1 设系统的开环传递函数为)2)(1(2)()(++=s s s Ks H s G试绘制系统的根轨迹。
解 根据绘制根轨迹的法则,先确定根轨迹上的一些特殊点,然后绘制其根轨迹图。
(1)系统的开环极点为0,1-,2-是根轨迹各分支的起点。
由于系统没有有限开环零点,三条根轨迹分支均趋向于无穷远处。
(2)系统的根轨迹有3=-m n 条渐进线渐进线的倾斜角为3180)12()12(-︒⨯+=-+=K m n K a πϕ 取式中的K =0,1,2,得φa =π/3,π,5π/3。
渐进线与实轴的交点为13)210(111-=--=⎥⎦⎤⎢⎣⎡--=∑∑==m i i nj j a z p m n σ 三条渐近线如图4-13中的虚线所示。
(3)实轴上的根轨迹位于原点与-1点之间以及-2点的左边,如图4-13中的粗实线所示。
(4)确定分离点 系统的特征方程式为022323=+++K s s s即)23(2123s s s K ++-=利用0/=ds dK ,则有0)26(2123=++-=s s ds dK 解得423.01-=s 和 577.12-=s由于在-1到-2之间的实轴上没有根轨迹,故s 2=-1.577显然不是所要求的分离点。
因此,两个极点之间的分离点应为s 1=-0.423。
(5)确定根轨迹与虚轴的交点 方法一 利用劳斯判据确定劳斯行列表为 3s 1 2 2s32K 1s326K-s2K由劳斯判据,系统稳定时K 的极限值为3。
相应于K =3的频率可由辅助方程0632322=+=+s K s确定。
解之得根轨迹与虚轴的交点为2j s ±=。
根轨迹与虚轴交点处的频率为41.12±=±=ω方法二 令ωj s =代入特征方程式,可得02)(2)(3)(23=+++K j j j ωωω即0)2()32(22=-+-ωωωj K令上述方程中的实部和虚部分别等于零,即0322=-ωK ,022=-ωω所以2±=ω 3=K(6)确定根轨迹各分支上每一点的K 值 根据绘制根轨迹的基本法则,当从开环极点0与-1出发的两条根轨迹分支向右运动时,从另一极点-2出发的根轨迹分支一定向左移动。
当前两条根轨迹分支和虚轴在K =3处相交时,可按式3)41.10()41.10(-=-+++j j x σ求出后一条根轨迹分支上K =3的点为οx =-3。
由(4)知,前两条根轨迹分支离开实轴时的相应根值为-0.423±j 0。
因此,后一条根轨迹分支的相应点为3)423.0()423.0(-=-+-+x σ所以 ,οx =-2.154。
因本系统特征方程式的三个根之和为-2K ,利用这一关系,可确定根轨迹各分支上每一点的K 值。
现在已知根轨迹的分离点分别为-0.423±j 0和-2.154,该点的K 值为)154.2()423.0(22--=-K即,K =0.195。
系统的根轨迹如图4-1所示。
例4-6 已知控制系统如图4-18所示图4-1 例4-1系统的根轨迹S 平面σωj 图4-6R (s )C (s )4)15.0(+s K(1) 试根据系统的根轨迹分析系统的稳定性。
(2) 估算%3.16%=p M 时的K 值。
解 44)2()2(16)(+=+=s K s Ks G g (1)系统有四个开环重极点:p 1=p 2=p 3=p 4=0。
没有零点。
实轴上除-2一点外,没有根轨迹段。
根轨迹有四条渐进线,与实轴的交点及夹角分别为248-=-=a σ 44)12(ππϕ±=+=K a ,π43±下面证明根轨迹和渐近线是完全重合的。
将根轨迹上任一点s =s 1代入幅角方程,有π)12()2(41+=+∠K s即 π)12(41)2(1+=+∠K s 和渐近线方位角a ϕ的表达式比较,两者相等,于是有a s ϕ=+∠)2(1由于s 1的任意性,因此根轨迹和渐近线完全重合。
系统的根轨迹如图4-7所示。
图知,随着K g 的增加,有两条根轨迹将与虚轴分别交于j 2和-j 2处。
将s =j 2代入幅值方程有1|)2(|4=+s K g解得开环根增益:K gc =64,开环增益:K c =K g /16=4.即当K=4时,闭环系统有一对虚根±j 2,系统处于临界稳定的状态。
当K >4时,闭环系统将出现一对实部为正的复数根,系统不稳定。
所以,使系统稳定的开环增益范围为0<K <4。
(2)由超调量的计算公式及指标要求,有%3.16%21==--ξξπeM p解得,5.0=ξS 平面σ图4-7 例4-6系统的根轨迹j ω即,系统闭环极点的阻尼角为︒===--605.0cos cos 11ξβ。