当前位置:文档之家› 冶金传输原理-吴铿编(动量传输部分)习题参考答案

冶金传输原理-吴铿编(动量传输部分)习题参考答案

1.d2.c3.a (题目改成单位质量力的国际单位)4.b5.b6.a7.c8.a9.c (不能承受拉力) 10.a 11.d 12.b(d 为表现形式)13. 解:由体积压缩系数的定义,可得:()()69669951000101d 15101/Pa d 1000102110p V V p β----⨯=-=-⨯=⨯⨯-⨯ 14. 解:由牛顿内摩擦定律可知, d d x v F A y μ= 式中A dl π= 由此得d 8.57d xv vF A dl N y μμπδ==≈1.a2.c3.b4.c5. 解:112a a p p gh gh gh p ρρρ=++=+汞油水12220.4Fgh gh d h m g ρρπρ++⎛⎫ ⎪⎝⎭==油水(测压计中汞柱上方为标准大气压,若为真空结果为1.16m )6.解:(测压管中上方都为标准大气压)(1)()()13121a a p p g h h g h h p ρρ=+-=-+油水ρ=833kg/m 3(2)()()13121a a p p g h h g h h p ρρ=+-=-+油水h 3=1.8m.220.1256m 2D S π== 31=Sh 0.12560.50.0628V m =⨯=水()331=S 0.1256 1.30.16328V h h m -=⨯=油7.解:设水的液面下降速度为为v ,dz v dt=- 单位时间内由液面下降引起的质量减少量为:24d v πρ 则有等式:224d v v πρ=,代入各式得:20.50.2744dz d z dt πρ-=整理得: 120.5200.2740.2744t d zdz dt t πρ--==⎰⎰解得:(212115180.2744d t s πρ⎛⎫=-= ⎪⎝⎭8. 解:10p p gh ρ=+a20s p p gh ρ=+()12a 248.7Pa s p p p gh ρρ∆=-=-=第三章习题参考答案(仅限参考)1.b2.c3.c4.c5.答:拉格朗日法即流体质点法必须首先找出函数关系x(a,b,c,t),y(a,b,c,t),z(a,b,c,t),ρ(a,b,c,t)等。

实际上就是要跟踪每一个流体质点,可见这个方法在方程的建立和数学处理上将是十分困难的。

因而除研究波浪运动等个别情况外很少采用。

实际上,在大多数的工程实际问题中,通常并不需要知道每个流体质点至始至终的运动过程,而只需要知道流体质点在通过空间任意固定点时运动要素随时间变化状况,以及某一时刻流场中各空间固定点上流体质点的运动要素,然后就可以用数学方法对整个流场进行求解计算。

6.答:流体在运动过程中,若每一空间点的物理量(运动参数)不随时间改变,则称为恒定流动(又称定常流动),否则称为非恒定流动(又称非定常流动) 流体质点的运动轨迹称为迹线。

流线是速度场的矢量线,是某瞬时在流场中所作的一条空间曲线。

7.解:(1) 356120010=2102300110m e v d R v --⨯⨯==⨯>⨯,湍流 (2) 350.215010=107.123002810m e v d R v --⨯⨯==<⨯,层流8.答:v=Q/A ,断面平均流速是一种假想的流速,即过断面上每一点的平均流速都相同。

断面平均流速的概念十分重要,它将使我们的研究和计算大为简化。

9.答:不正确。

均匀流是相对于空间分布而言,恒定流是相对于时间而言。

均匀流的不同时刻的速度可以不同,也可以相同。

恒定流的不同空间点上的速度可以不同,也可以相同。

当流量不变时,通过一变直径管道,显然是恒定流,但不是均匀流。

10. 解:根据欧拉法中速度的定义:()()(),,,,,,,y,z,x y z x V x y z t t y V x y z t t z V x t t ∂⎧=⎪∂⎪∂⎪=⎨∂⎪∂⎪=⎪∂⎩ 得: 112dx k y dt dy k x dt dz k dt ⎧-=⎪⎪⎪=⎨⎪⎪=⎪⎩右边第一个式子,两边对t 求导,联合第二个式子可得:22120d x k x dt+=,解这个常微分方程得: 1121cos()sin()x c k t c k t =+将x 带入原方程得:1121sin()cos()y c k t c k t =-,23z k t c =+再根据初始条件,得:123c a c b c c ==-=,,于是得到拉格朗日法表示为:11cos()sin()x a k t b k t =-11sin()cos()y a k t b k t =+2z k t c =+11. 解:根据随体导数定义:x x x x x x y z y y y y y x y z z z z z z x y z v v v v a v v v t x y z v v v v a v v v t x y z v v v v a v v v t x y z ∂∂∂∂⎧=+++⎪∂∂∂∂⎪∂∂∂∂⎪=+++⎨∂∂∂∂⎪⎪∂∂∂∂=+++⎪∂∂∂∂⎩将速度代入随体导数中,得:()()()22322023023x a x y xy y x x y x y =++-+=-()()033009y a y y =+--++=3300088z a z z =+++=代入点(1,2,3)得:218216x y z a a a ⎧=⎪=⎨⎪=⎩第四章习题参考答案(仅限参考)1. 错、错、错2.a3.c4.解:根据平面不可压缩流体连续性的性质:(1)0x z V V x z∂∂+=∂∂;连续 (2)101x z V V x z∂∂+=+=∂∂;不连续 (3)21x z V V x x z∂∂+=+∂∂;当x=0.5时连续,其他情况不连续5. 解:同题4,(1)cos()cos()x y V Ay xy x V Ax xy y∂⎧=⎪∂⎪⎨∂⎪=-⎪∂⎩;当x=y 时,连续;其他情况不连续 (2)x y V A x y V Ayy ∂⎧=-⎪∂⎪⎨∂⎪=⎪∂⎩;连续6. 解:应用伯努利方程:'2+0+0+02p v p g g gρρ+= 解得20.98/v m s == 流量2331 3.14 2.3710/4Q d v m s -=⨯=⨯7. 解:根据流体静力学知识得到以下关系式:122p gh p gh g h ρρρ+=++∆水根据左右两管水的体积相等,有:22244d D h h ⨯=∆⨯得:222d h h D ∆=,代入可解得: 12220.12p p h m d g g g D ρρρ-==-+水8. 解:选取圆柱坐标系,假设流动是沿z 轴方向进行,且为充分发展的层流流动。

根据已知条件可知,流动是轴对称,θ方向可不考虑,仅z 方向有流动。

由连续性方程、稳定流动,忽略质量力,则有:2222222111z z z z z z z z r z z P F t r r z z r r r r z θυυυυυυυυυμυυθρρθ⎛⎫∂∂∂∂∂∂∂∂∂+++=-++++ ⎪∂∂∂∂∂∂∂∂∂⎝⎭0r θυυ==;0z z z υυθ∂∂==∂∂;22220z z z υυθ∂∂==∂∂;0t ∂=∂; 化简得:11()z P r r r r z υμ∂∂∂=∂∂∂;11()z P r r r r zυμ∂∂∂=∂∂∂=常数 进行第一次积分,并将边界条件r=0处,代入,算得积分常数C1;再进行第二次积分,并将r=R 处,υz=0代入,算得出C2。

最后得到:22221()[1()]44z dP R dP r R r dz dz Rυμμ=--=-- 式中r 为管截面上速度为υz 处到管中心的距离,R 为圆管半径。

显然其速度分布呈抛物线形。

下面很容易推导出υz 与υzmax 的关系为:2max [1()]z z r Rυυ=-9.解:列1-2处的伯努力方程:(以2处为0基点),用相对压强计算:2212200022v v gh ++=++ 由于水槽的直径比虹吸管的直径大很多,那么就可以近似设v 1等于0。

代入可得28.86/v m s ==流量2233222 3.14 3.14 6.2610/44d d Q v m s -=⨯=⨯=⨯ 同理列2-3处的伯努利方程(p 2为什么为0):(以2处为0基点)2233212()0022p v v g h h ρ+++=++根据质量守恒:3处和2处的速度满足:22322144v v d d =,得23 2.215/4v v m s == 代入得:2221312()22024.32v v p h h g Pa g ρ⎡⎤⎛⎫-=-+=-⎢⎥ ⎪⎝⎭⎣⎦负号表示C 处的压强低于一个大气压,处于真空状态。

正是由于这一真空,才可将水箱中的水吸起。

用绝对压强表示:101325-22024.3=79300.7 Pa.第五章习题参考答案(仅限参考)1.a2.b3.d4.c5.d6.解: 22m v L p d ρλ∆=假设雷诺数小于2300,有6464Re m λv d ν==,代入上式得:2226464222m m m m v v L v L L p d v d d dρρνρνλ∆=== 则2264220.150.96510 1.84/64644109201000m d p v m s L νρ-∆⨯⨯⨯===⨯⨯⨯⨯ 41.840.15Re 6902300410m v dν-⨯===<⨯,符合假设 ()2233.140.15 1.840.03m s 44m m d Q Av v π⨯⨯==== 另一种简单计算方法:假设雷诺数小于2300,有 226240.150.96510 1.84/832324109201000m p d p v R m s L L μνρ-∆∆⨯⨯====⨯⨯⨯⨯ 41.840.15Re 6902300410m v dν-⨯===<⨯,符合假设 ()2233.140.15 1.840.03m s 44m m d Q Av v π⨯⨯====7.解: ()22440.030.425m 3.140.3m Q v d π⨯===⨯ 40.4250.3Re 106323001.210m v d ν-⨯===<⨯ 640.06Reλ==22300.4250.060.0620.329.81m f v L h m d g λ∆==⨯⨯=⨯8.解: ()22440.05 1.02m s 3.140.25m Q v d π⨯===⨯ 5561.020.25Re 2.510101.00710m v dν-⨯===⨯>⨯ 0.00130.00520.25d ε==;查莫迪图得0.031λ= 22100 1.020.0310.6620.2529.81m f v L h m d g λ∆==⨯⨯=⨯9.解: ()220.32944260 1.4m s 3.140.05m Q v d π⨯⨯===⨯ 22m v p L h g d gζλρ∆⎛⎫∆==+ ⎪⎝⎭ 22226168.6100.03 6.2960.291000 1.40.05m p L v d ζλρ∆⨯=-=-⨯=-=⨯ 10.解:22700 1.132.930.02 6.6420.1529.81m i i v L h m d g ζλ⎛⎫⎛⎫∆=+=⨯+⨯⨯= ⎪ ⎪⨯⎝⎭⎝⎭∑11.解:550.250.305 1.23Re 5269101.7810m m v dv d ρνμ-⨯⨯====<⨯ 025031640.037.e .λR ==2233234()11248()32110.3960.3050.037 1.230.25 5.5880.390.0012m d p L v d Pa πελρεπ-∆=-=⨯⨯⨯⨯⨯⨯=12.解:()2212000044606025m 3.14m Q v d d π⨯⨯===⨯ 解得d=1.3m65525 1.3Re 2.0710101.5710m v dν-⨯===⨯>⨯ 0.00050.0003851.3d ε==;查莫迪图得0.0155λ= 22120252.5110.0155921.572 1.329.81m i i v L h m d g ζλ⎛⎫⎛⎫∆=+=⨯+⨯⨯= ⎪ ⎪⨯⎝⎭⎝⎭∑ 1.239.81921.5711120p g h Pa ρ∆=∆=⨯⨯=()551.569 1.013250.1110 2.47110i M a p p p p Pa =+-∆=+-⨯=⨯13.解:()221750044606011.9m s 3.140.72m Q v d π⨯⨯===⨯ 5411.90.72Re 5.46100.15710m v dν-⨯===⨯⨯ (1)0.20.000278720d ε==;查莫迪图得0.0147λ= 2228.611.90.0147 4.2120.7229.81m f v L h m d g λ∆==⨯⨯=⨯ (2)20.00278720d ε==;查莫迪图得0.0265λ= 2228.611.90.03657.6020.7229.81m f v L h m d g λ∆==⨯⨯=⨯第六章习题参考答案(仅限参考)1.解:66173 3.4101510x x Re υν∞-⨯=⨯⨯==x δ=38.1310m δ-===⨯2.解:5630.172101510x x x Re υν∞-=⨯⨯== 0.1x m =3.解:66500.93101510cr cr x x Re υν∞-⨯=⨯⨯== 76503 1.0101510L L Re υν∞-⨯=⨯⨯==30.4110L f C -==⨯ 30.20.074 2.9510T f L C Re -==⨯ ()*7620cr T L f f x A C C Re =-=(若查表,则A *=8700)22*0.20.0749.8622f f LL A F C bl bl N Re Re ρυρυ∞∞⎛⎫==-= ⎪⎝⎭ (查附录1,对应的ρ=1.205kg/m 3)4.解:379.6L L Re ρυμ∞==δ=max 0.128mδ==0.068L fC==22 1.702Lf fF C bl Nρυ∞==第七章习题参考答案(仅限参考)1.解:由于00.50.528p p =<,所以应为超声速流动,但收缩喷管出口喷速最大只能达到声速,即Ma =1。

相关主题