当前位置:文档之家› 高考物理带电粒子在电场中的运动解题技巧和训练方法及练习题(含答案)

高考物理带电粒子在电场中的运动解题技巧和训练方法及练习题(含答案)

高考物理带电粒子在电场中的运动解题技巧和训练方法及练习题(含答案)一、高考物理精讲专题带电粒子在电场中的运动1.“太空粒子探测器”是由加速、偏转和收集三部分组成,其原理可简化如下:如图1所示,辐射状的加速电场区域边界为两个同心平行半圆弧面,圆心为O ,外圆弧面AB 的电势为2L()o ϕ>,内圆弧面CD 的电势为φ,足够长的收集板MN 平行边界ACDB ,ACDB 与MN 板的距离为L .假设太空中漂浮着质量为m ,电量为q 的带正电粒子,它们能均匀地吸附到AB 圆弧面上,并被加速电场从静止开始加速,不计粒子间的相互作用和其它星球对粒子的影响,不考虑过边界ACDB 的粒子再次返回.(1)求粒子到达O 点时速度的大小;(2)如图2所示,在PQ (与ACDB 重合且足够长)和收集板MN 之间区域加一个匀强磁场,方向垂直纸面向内,则发现均匀吸附到AB 圆弧面的粒子经O 点进入磁场后最多有23能打到MN 板上,求所加磁感应强度的大小;(3)如图3所示,在PQ (与ACDB 重合且足够长)和收集板MN 之间区域加一个垂直MN 的匀强电场,电场强度的方向如图所示,大小4E Lφ=,若从AB 圆弧面收集到的某粒子经O 点进入电场后到达收集板MN 离O 点最远,求该粒子到达O 点的速度的方向和它在PQ 与MN 间运动的时间. 【答案】(1)2q v mϕ=2)12m B L q ϕ=;(3)060α∴= ;22m L q ϕ【解析】 【分析】 【详解】试题分析:解:(1)带电粒子在电场中加速时,电场力做功,得:2102qU mv =-2U ϕϕϕ=-=2q v mϕ=(2)从AB 圆弧面收集到的粒子有23能打到MN 板上,则上端刚好能打到MN 上的粒子与MN 相切,则入射的方向与OA 之间的夹角是60︒,在磁场中运动的轨迹如图甲,轨迹圆心角060θ=.根据几何关系,粒子圆周运动的半径:2R L =由洛伦兹力提供向心力得:2v qBv m R=联合解得:12m B L qϕ=(3)如图粒子在电场中运动的轨迹与MN 相切时,切点到O 点的距离最远, 这是一个类平抛运动的逆过程. 建立如图坐标.212qE L t m=222mL mt L qE q ϕ==22x Eq qEL q v t m m m ϕ===若速度与x 轴方向的夹角为α角cos x v v α=1cos 2α=060α∴=2.如图甲所示,极板A 、B 间电压为U 0,极板C 、D 间距为d ,荧光屏到C 、D 板右端的距离等于C 、D 板的板长.A 板O 处的放射源连续无初速地释放质量为m 、电荷量为+q 的粒子,经电场加速后,沿极板C 、D 的中心线射向荧光屏(荧光屏足够大且与中心线垂直),当C 、D 板间未加电压时,粒子通过两板间的时间为t 0;当C 、D 板间加上图乙所示电压(图中电压U 1已知)时,粒子均能从C 、D 两板间飞出,不计粒子的重力及相互间的作用.求:(1)C 、D 板的长度L ;(2)粒子从C 、D 板间飞出时垂直于极板方向偏移的最大距离; (3)粒子打在荧光屏上区域的长度. 【答案】(1)02qU L t m =2)2102qU t y md =(3)21032qU t s s md∆== 【解析】试题分析:(1)粒子在A 、B 板间有20012qU mv = 在C 、D 板间有00L v t = 解得:02qU L t m=(2)粒子从nt 0(n=0、2、4……)时刻进入C 、D 间,偏移距离最大 粒子做类平抛运动 偏移距离2012y at = 加速度1qU a md=得:2102qU t y md=(3)粒子在C 、D 间偏转距离最大时打在荧光屏上距中心线最远ZXXK] 出C 、D 板偏转角0tan y v v θ=0y v at =打在荧光屏上距中心线最远距离tan s y L θ=+荧光屏上区域长度21032qU t s s md∆==考点:带电粒子在匀强电场中的运动【名师点睛】此题是带电粒子在匀强电场中的运动问题;关键是知道粒子在水平及竖直方向的运动规律和特点,结合平抛运动的规律解答.3.如图所示,在空间坐标系x <0区域中有竖直向上的匀强电场E 1,在一、四象限的正方形区域CDEF 内有方向如图所示的正交的匀强电场E 2和匀强磁场B ,已知CD =2L ,OC =L ,E 2 =4E 1。

在负x 轴上有一质量为m 、电量为+q 的金属a 球以速度v 0沿x 轴向右匀速运动,并与静止在坐标原点O 处用绝缘细支柱支撑的(支柱与b 球不粘连、无摩擦)质量为2m 、不带电金属b 球发生弹性碰撞。

已知a 、b 球体积大小、材料相同且都可视为点电荷,碰后电荷总量均分,重力加速度为g ,不计a 、b 球间的静电力,不计a 、b 球产生的场对电场、磁场的影响,求:(1)碰撞后,a 、b 球的速度大小; (2)a 、b 碰后,经023v t g=时a 球到某位置P 点,求P 点的位置坐标; (3)a 、b 碰后,要使 b 球不从CD 边界射出,求磁感应强度B 的取值。

【答案】(1) 013a v v =-,023=b v v ;(2)(2029g v - ,209g v - ); (3) 016m 015v B qL <<或16m 3v B qL>【解析】 【分析】(1)a 、b 碰撞,由动量守恒和能量守恒关系求解碰后a 、b 的速度;(2)碰后a 在电场中向左做类平抛运动,根据平抛运动的规律求解P 点的位置坐标; (3)要使 b 球不从CD 边界射出,求解恰能从C 点和D 点射出的临界条件确定磁感应强度的范围。

【详解】 (1)a 匀速,则1mg qE = ①a 、b 碰撞,动量守恒02a b mv mv mv =+ ②机械能守恒()22201112222a b mv mv m v =+ ③ 由②③得013a v v =-,023=b v v ④(2)碰后a 、b 电量总量平分,则12a b q q q ==碰后a 在电场中向左做类平抛运动,设经023v t g=时a 球到P 点的位置坐标为(-x ,-y ) a x v t = ⑤ ,212y at =⑥ 其中112mg qE ma -=⑦,12a g =由⑤⑥⑦得2029v x g =,209v y g=故P 点的位置坐标为(2029g v - ,29gv - )⑧ (3)碰撞后对b2122qE mg = ⑨ 故b 做匀速圆周运动,则2122b b v qv B m r= ⑩ 得83mv r qB=⑪ b 恰好从C 射出,则2L r =⑫由⑪⑫得116m 3v B qL=恰从D 射出,则由几何关系()2224r L r L =+- ⑬,得52r L =⑭ 由⑪⑭得216m 15v B qL=故要使b 不从CD 边界射出,则B 的取值范围满足016m 015v B qL <<或016m 3v B qL>【点睛】本题考查带电粒子在电磁场中的运动以及动量守恒定律及能量守恒关系,注意在磁场中的运动要注意几何关系的应用,在电场中注意由类平抛运动的规律求解。

4.如图所示,在直角坐标系x0y 平面的一、四个象限内各有一个边长为L 的正方向区域,二三像限区域内各有一个高L ,宽2L 的匀强磁场,其中在第二象限内有垂直坐标平面向外的匀强磁场,第一、三、四象限内有垂直坐标平面向内的匀强磁场,各磁场的磁感应强度大小均相等,第一象限的x<L ,L<y<2L 的区域内,有沿y 轴正方向的匀强电场.现有一质量为四电荷量为q 的带负电粒子从坐标(L ,3L/2)处以初速度0v 沿x 轴负方向射入电场,射出电场时通过坐标(0,L)点,不计粒子重力.(1)求电场强度大小E ;(2)为使粒子进入磁场后途经坐标原点0到达坐标(-L ,0)点,求匀强磁场的磁感应强度大小B ;(3)求第(2)问中粒子从进入磁场到坐标(-L ,0)点所用的时间.【答案】(1)2mv E qL=(2)04nmv B qL =n=1、2、3......(3)02L t v π= 【解析】本题考查带电粒子在组合场中的运动,需画出粒子在磁场中的可能轨迹再结合物理公式求解.(1)带电粒子在电场中做类平抛运动有: 0L v t =,2122L at=,qE ma = 联立解得: 20mv E qL=(2)粒子进入磁场时,速度方向与y 轴负方向夹角的正切值tan xyv v θ==l 速度大小002sin v v v θ== 设x 为每次偏转圆弧对应的弦长,根据运动的对称性,粒子能到达(一L ,0 )点,应满足L=2nx ,其中n=1、2、3......粒子轨迹如图甲所示,偏转圆弧对应的圆心角为2π;当满足L=(2n+1)x 时,粒子轨迹如图乙所示.若轨迹如图甲设圆弧的半径为R ,圆弧对应的圆心角为2π.则有2R ,此时满足L=2nx 联立可得:22R n=由牛顿第二定律,洛伦兹力提供向心力,则有:2v qvB m R=得:04nmv B qL=,n=1、2、3.... 轨迹如图乙设圆弧的半径为R ,圆弧对应的圆心角为2π.则有222x R ,此时满足()221L n x =+联立可得:()2212R n =+由牛顿第二定律,洛伦兹力提供向心力,则有:222v qvB m R =得:()2221n mvBqL+=,n=1、2、3....所以为使粒子进入磁场后途经坐标原点0到达坐标(-L,0)点,求匀强磁场的磁感应强度大小04nmvBqL=,n=1、2、3....或()2221n mvBqL+=,n=1、2、3....(3) 若轨迹如图甲,粒子从进人磁场到从坐标(一L,0)点射出磁场过程中,圆心角的总和θ=2n×2π×2=2nπ,则2222n n m Lt TqB vππππ=⨯==若轨迹如图乙,粒子从进人磁场到从坐标(一L,0)点射出磁场过程中,圆心角的总和θ=(2n+1)×2π=(4n+2)π,则2220(42)(42)2n n m Lt TqB vππππ++=⨯==粒子从进入磁场到坐标(-L,0)点所用的时间为2222n n m Lt TqB vππππ=⨯==或2220(42)(42)2n n m Lt TqB vππππ++=⨯==5.如图所示,两块平行金属极板MN水平放置,板长L =" 1" m.间距d =3m,两金属板间电压U MN= 1×104V;在平行金属板右侧依次存在ABC和FGH两个全等的正三角形区域,正三角形ABC内存在垂直纸面向里的匀强磁场B1,三角形的上顶点A与上金属板M 平齐,BC边与金属板平行,AB边的中点P恰好在下金属板N的右端点;正三角形FGH内存在垂直纸面向外的匀强磁场B2,已知A、F、G处于同一直线上.B、C、H也处于同一直线上.AF两点距离为23m.现从平行金属极板MN左端沿中心轴线方向入射一个重力不计的带电粒子,粒子质量m = 3×10-10kg,带电量q = +1×10-4C,初速度v0= 1×105m/s.(1)求带电粒子从电场中射出时的速度v的大小和方向(2)若带电粒子进入中间三角形区域后垂直打在AC边上,求该区域的磁感应强度B1(3)若要使带电粒子由FH边界进入FGH区域并能再次回到FH界面,求B2应满足的条件.【答案】(152310/m s;垂直于AB方向出射.(233(323+【解析】试题分析:(1)设带电粒子在电场中做类平抛运动的时间为t,加速度为a,则:Uq mad=解得:102310/3qUa m smd==⨯5110Lt sv-==⨯竖直方向的速度为:v y=at=33×105m/s射出时速度为:2252310/yv v v m s=+=⨯速度v与水平方向夹角为θ,3tan3yvvθ==,故θ=30°,即垂直于AB方向出射.(2)带电粒子出电场时竖直方向的偏转的位移213262dy at m===,即粒子由P1点垂直AB射入磁场,由几何关系知在磁场ABC区域内做圆周运动的半径为12cos303dR m==o由211vB qv mR=知:1133mvB TqR==(3)分析知当轨迹与边界GH相切时,对应磁感应强度B2最大,运动轨迹如图所示:由几何关系得:221sin60RRo+=故半径2(233)R m=又222vB qv mR=故223B+=所以B223+.考点:带电粒子在匀强磁场中的运动.6.如图所示,虚线OL与y轴的夹角θ=450,在OL上侧有平行于OL向下的匀强电场,在OL下侧有垂直纸面向外的匀强磁场,一质量为m、电荷量为q(q>0)的粒子以速率v0从y轴上的M(OM=d)点垂直于y轴射入匀强电场,该粒子恰好能够垂直于OL进入匀强磁场,不计粒子重力。

相关主题