当前位置:
文档之家› 【精品毕设】基于单片机的机械臂控制系统设计与制作
【精品毕设】基于单片机的机械臂控制系统设计与制作
本次课程设以单片机作为控制器实现对机械手臂的简单控制。在单片机最小系统的基础上扩展按键接口和舵机接口以及LED显示器,构成最简单的机械臂控制系统。
第二章 硬件设计
2.1 硬件结构图
本系统的控制器采用的是STC12C5A32S2单片机,具有A/D转换功能,并能产生PWM信号,有内部EEPROM、双串口,具有单时钟/机器周期(1T),是高速、低功耗、超强抗干扰的新一代8051单片机,指令代码不仅完全兼容传统8051,而且速度快8-12倍。
基于单片机的机械臂控制系统设计与制作
电子信息科学与技术专业
学 号:**********
*******************************************
班 级:电科081
日 期:2011.10.26
课程设计题目及要求
第一章绪论
1.1 设计题目及要求
1.2 设计内容
第二章硬件设计
2.1 硬件结构图
舵机的转速取决于信号脉宽的变化速度。如果信号脉宽变化速度太较快的话,舵机会反应不过来;将脉宽变化值线性到要求的时间内,一点一点的增加脉宽值,就可以控制舵机的速度了。具体来说需要在调试时修改数值,以使舵机的运动更平滑。由于舵机在每一次脉宽值改变的时候总会有一个转速由零增加再减速为零的过程,所以舵机会产生像步进电机一样运动的原因。
本次设计基本原理是通过P3口的6个引脚输出周期固定占空比可调的PWM波形来控制舵机的转动及角度,通过按键实现对舵机角度的控制,从而实现对物品的转移。通过P0口输出数据以及P2口高四位的扫描实现数码管的显示。通过P1口以及P2低四位引脚连接按键,控制舵机转动。
2.2.2 舵机模块
舵机是一种位置(角度)伺服的驱动器,适用于那些需要角度不断变化并可以保持的控制系统。目前在航模,包括飞机模型、潜艇模型,遥控机器人中已经使用得比较普遍。舵机是一种俗称,其实是一种伺服马达。
实习内容:
1,完成基于单片机的机械臂控制系统原理图和PCB的绘制,在
基本要求的基础上自己可以作一定的扩展;
2,利用热转印纸、三氯化铁腐蚀液等完成PCB板的制作;
3,完成相应电路的焊接和调试;
4,完成相应软件程序的编写;
5,完成软、硬件的联调;
6,交付实习报告。
实习要求:
1,两人一组,自由搭配,但要遵循能力强弱搭配、男女搭配、考研和不考研的搭配;
一般来讲,舵机主要由以下几个部分组成:舵盘、减速齿轮组、位置反馈电位计5k、直流电机、控制电路板等。
工作原理:控制电路板接受来自信号线的控制信号,控制电机转动,电机带动一系列齿轮组,减速后传动至输出舵盘。舵机的输出轴和位置反馈电位计是相连的,舵盘转动的同时,带动位置反馈电位计,电位计将输出一个电压信号到控制电路板,进行反馈,然后控制电路板根据所在位置决定电机的转动方向和速度,从而达到目标停止。
标准的舵机有3条导线,分别是:电源线、地线、控制线,如图2所示。电源和地线给舵机提供最基本的能源保证,主要是电机的转动消耗。
舵机的控制信号为周期是20ms的脉宽调制(PWM)信号,其中脉冲宽度从0.5ms-2.5ms,相对应舵盘的位置为0-180度,呈线性变化。也就是说,给它提供一定的脉宽,它的输出轴就会保持在一个相对应的角度上,无论外界转矩怎样改变,直到给它提供一个另外宽度的脉冲信号,它才会改变输出角度到新的对应的位置上。程序实现上可通过定时器来实现
二十一世纪,随着机械化、自动化水平的不断提高,不仅减轻了劳动强度、提高生产率,而且把人类活动从危险、恶劣环境中替换出来。而其中机器人技术,显示出极大的优越性;在宇宙探索、海洋开发以及军事应用上具有重要的实用价值。大力发展机器人技术,一方面能让社会从劳动苦力型转换到福利休闲型,另一方面能极大的提高民众的幸福感。在新时期的世界各国,随着应用日益广泛,机器人技术将不断发展并走向成熟。
2.2 各模块工作原理及设计
2.2.1 控制模块
2.2.2 显示模块
2.2.3 按键模块
2.2.4 舵机模块
2.3 软件程序设计
第三章硬件制作以及程序的下载调试
3.1 电路板的制作
3.2 元器件的焊接
3.3 程序的下载与调试
第四章总结
4.1 课程设计体会
4.2 奇瑞参观感受
课程设计题目及要求
题目: 基于单片机的机械臂控制系统设计与制作
STC12C5A60S2/AD/PWM系列单片机是宏晶科技生产的单时钟/机器周期(1T)的单片机,是高速/低功耗/超强抗干扰的新一代8051单片机,指令代码完全兼容传统8051,但速度快-12倍。内部集成MAX810专用复位电路,2路PWM,8路高速10位A/D转换(250K/S),针对电机控制、强干扰场合。
P1.0—P1.7(1-8):P1口是带内部上拉电阻的8位双向I/O口。在EPROM编程和程序验证时,它接收低8位地址。
P2.0—P2.7(21-28):P2口是一个带内部上拉电阻的8位双向I/O口。在访问外部存储器时,它送出高8位地址。在对EFROM编程和程序验证期间,它接收高8位地址。
P3.0—P3.7(10-17):P3口是一个带内部上拉电阻的8位双向I/O口。
本系统是在单片机最小系统的基础上扩展键盘接口和舵机接口以及LED显示模块。
硬件结构图如下:
图1 硬件结构
2.2 各模块工作原理及设计
2.2.1 控制模块
本系统的控制模块选用STC12C5A32S2单片机
引脚及功能:
STC12C5A32S2单片机引脚图
P0.0—P0.7(39—32引脚):P0口是一个漏极开路型准双向I/O口。在访问外部存储器时,它是分时多路转换的地址(低8位)和数据总线,在访问期间激活了内部的上拉电阻。在EPROM编程时,它接收指令字节,而在验证程序时,则输出指令字节。验证时,必须外接上拉电阻。
2,充分发挥主观能动性,遇到问题尽量自己解决,在基本要求基础上可自由发挥;
3,第一次制作电路,电路不可追求复杂;
4,注意安全!熨斗、烙铁。
第一章 绪 论
单片机自20世纪70年代问世以来,以其极高的性价比,受到人们的重视和关注,应用广泛,发展迅速。单片机集体积小、重量轻、抗干扰能力强、环境要求低、价格低廉、可靠性高、灵活性好、开发较为容易等众多优点,以广泛用于工业自动化控制、自动检测、智能仪器仪表、家用电器、电力电子、机电一体化设备等各个方面,无论在民间、商业、及军事领域单片机都发挥着十分重要的作用