西南交大的课件第1节基于通信的列车控制系统概述《列控车载设备》、《列控地面设备》徐啸明,中国铁道出版社,2007《闭塞与列控》付世善,中国铁道出版社,20061.CBTC的发展前提和前景19世纪中叶出现火车之后,立即就有人研究如何控制火车安全运行问题。
早期,为了保证列车的安全,所以采用人骑马作为列车运行先导,以后又用过在一定距离设置导运人员,挥旗来表达列车可否安全前行。
1930年在英国开始第一次应用横木式带灯光的信号机,而美国在1932年采用在柱子上挂黑球或白球来对列车指示停车或通过。
1941年臂板信号才正式诞生在英国。
1932年莫尔斯电报机发明后,很快就引人到铁路。
1941年英国人提出闭塞电报机专利,并于1951年在英国铁路获得普及应用。
1976年发明了电话,又为铁路应用构成电话闭塞,这种方法至今在特殊情况下,如地震、洪水后等应急时尚有应用。
除了上述两种方法,还有应用路签机和路牌机方法,1979年英国人泰尔(Tyres)发明电气路牌机,即两相邻车站各有一个路牌机,它们之间有电气联接,两站之间有列车运行,一定要领到一个路牌才能作为运行的凭证。
而在平时,在一个时间内只允许有一个路牌从中取出,以此保证行车安全。
1999年英国人韦布和汤姆森( Webb and Thomson)发明了电气路签机,它工作原理与电气路牌机相似,即平时在一组路签机中只能取出一枚路签供运行的列车司机作为行车凭证。
从宏观来分析,列车运行控制系统实际上包含下列几个部分:1. 车站的列车运行控制系统它一般以车站联锁来表达。
在一个车站内,将车站内的道岔,进站、出站、调车信号机,车站主干线、车站股道等三大部分之间按一定联锁关系构成系统,为列车创造行车进路或调车进路,它既要保证行车安全,又要保证行车效率。
2. 区间的列车运行控制系统它是指列车在所有车站与车站之间运行的控制系统,其目的是保证它们的安全运行、提高行车效率和提供信息。
3. 驼峰编组站运行控制系统从逻辑控制使用来区分,上述三方面系统是各自独立的,即它们的硬件系统和软件系统都独立,它们的研究开发、设计、生产、使用等可以彼此不相干。
但是从信息流而言,这三者之间有着千丝万缕的联系,因为任何旅客列车运行,都要经过车站和区间,而货物列车则不仅有经车站、区间之外还有驼峰编组站。
从微观而言,人们经常把列车运行控制系统指的是区间列车运行控制系统,而且往往简称为列车运行控制系统,但实际上在车站范围的列车运行控制也属于此范畴。
在TTS-R中,列车运行控制系统占有重要的地位,因为它是协调运输中速度、密度和载重三者之间关系,它也是提供列车运行实时信息等关键所在。
在区间列车运行控制中,最基本的问题有以下三方面:CBTC的发展前提和背景(点击开始播放)(1) 要保证任何一个运行中的列车是安全的,即它要与前行列车保持足够的安全距离,不撞前行车,同时也要防护本列车,使后续列车也与本列车保持一个安全距离。
为此,就必须决定本列车应该按什么速度行车,安全是行车的基本要求。
(2) 在保证行车安全的前提下,还要使行车有效率。
业主、旅客和货主三者都对此有共同要求,而且它也是表征一个国家经济是否发达的标志之一。
(3) 在信息社会里,有关列车运行的信息也极为重要。
因为运行管理者只有知道所有列车信息,它才能统筹管理;旅客关心的是列车什么时候开,什么时候到达目的地,中间又经过什么地方,沿路有否好风景;货主关心的是什么时候可将托运的货物送走,运行列车现在又在哪里?它什么时候到达货物目的地?因此,列车运行中首先要提供最原始的“3W”信息,即:1W——When——什么时间2W——What——什么列车3W——Where——在哪里有了一系列基础信息之后,才能派生出二次、三次等多次相关信息。
基于通信的列车控制(Communications-based Train Control, CBTC)系统独立于轨道电路,采用高精度的列车定位和连续、高速、双向的数据通信,通过车载和地面安全设备实现对列车的控制。
CBTC已在全世界范围内发展,它不仅在地面大铁路得到推广应用,而且在城市轨道交通系统,包括地下铁道或快捷运输线路也给以青睐。
基于通信的列车控制利用先进的通信、计算机技术。
突破了固定闭塞的局限,实现了移动闭塞,在技术和成本上较传统的信号系统有明显的优势。
该技术无需在轨道上进行固定长度、固定位置的闭塞分区,而是把每一列车加上前后的一定安全距离作为一个移动的分区,列车制动的起点和终点都是动态的。
列车的安全间距是按后续列车在当前速度下所需的制动距离加上安全余量计算得出。
列车的最小运行间隔在90s以内,个别条件下可实现小于60 s 的间隔时间。
与传统的固定闭塞、准移动闭塞技术相比移动闭塞技术实现了车载设备与轨旁设备不间断的信急双向传输,使列车定位更精确、控制更灵活,可以安全有效地缩短列车间隔,提高列车运行的安全性与可靠性。
降低列车的运营和维护成本。
CBTC技术发源于欧洲连续式列车控制系统,经过多年的发展,取得了长足的进步。
包括阿尔卡特、西门子、阿尔斯通等多家列车控制系统设备提供商均开发出了自己的CBTC系统,并在温哥华、伦敦、巴黎、香港、武汉等多个城市的轨道交通线路上运行。
我国于2004年投入运营的武汉轻轨是国内第一条采用CBTC方案的城市轨道交通线路。
然而对于仍在运营的轨道交通系统,如何在不影响服务的条件下应用先进的信号系统,是运营商在考虑对信号系统进行升级时必须而对的问题。
迄今为止最大的,实现不同厂商CBTC系统设备互连互通的CBTC项目正在纽约地铁进行,并准备将该技术用于改造纽约地铁信号系统。
1999年,电气和电子工程师协会轨道交通运输车辆接口委员会(IEEE Rail Transit Vehicle Interface Standards Committee, IEEE RTVISC)制定并颁布了CBTC技术标准《IEEE Std 1474.1一1999 KIEEE基于通信列车控制的性能和功能要求(第一版)》("IEEE Standard for Communications-Based Train Control(CBTC)Performance and Functional and Functional Requirements",以下简称标准)。
准标准详细定义了CBTC系统的功能,并规定了CBTC系统的列车运行间隔、安全性和可用性等技术指标。
第2节 CBTC的特点1.CBTC的特点移动闭塞系统通过列车与地面间连续的双向通信。
实时提供列车的位置及速度等信息,动态地控制列车运行。
移动闭塞制式下后续列车的最大制动目标点可比准移动闭塞和固定闭塞更靠近先行列车,因此可以缩小列车运行间隔,使运营公司有条件实现“小编组,高密度”,从而使系统可以在满足同等客运需求条件下减少旅客候车时间,缩小站台宽度和空间,降低基建投资。
此外,由于系统采用模块化设计,核心部分均通过软件实现。
因此使系统硬件数量大大减少,可节省维护费用。
移动闭塞系统的安全关联计算机一般采取三取二或二取二的冗余配置。
系统通过故障安全原则对软、硬件及系统进行量化和认证,可保证系统的可靠性、安全性和可用度。
无线移动闭塞的数据通信系统对所有的子系统透明,对通信数据的安全加密和接入防护等措施可保证数据通信的安全。
由于采取了开放的国际标准,可实现子系统间逻辑接口的标准化,从而有可能实现路网的互联互通。
采取开放式的国际标准也使国内厂商可从部分部件的国产化着手,逐步实现整个系统的国产化。
在对既有点式ATP或数字轨道电路系统的改造中,移动闭塞系统能直接添加到既有系统之上。
因此对于混合列车运行模式来说,移动闭塞技术是非常理想的选择。
与传统的基于轨道电路的列车控制系统比较,CBTC系统的优势主要表现在以下几点:1. 更简洁从硬件结构看,系统以控制中心设备为核心,车载和车站设备为执行机构,车、地列车控制设备一体化。
从功能上看,联锁、闭塞、超速防护等功能通过软件统一设备实现,不再分隔。
因此,整个系统摆脱了积木堆叠式结构,而是一个统一的整体。
系统结构更简洁。
2. 更灵活系统不需要新增任何设备,自然支持双向运行,而且不因为列车的反方向运行,降低系统的性能和安全。
所以,CBTC系统在运营时,可以根据需要,使用不同的调度策略。
此外,还表现在CBTC系统可以处理多条线路交叉,咽喉区段列车运行极其复杂的情况。
另外CBTC 系统内可以同时运行不同编组长度、不同性能的列车。
3. 更高效系统可以实现移动闭塞,控制列车按移动闭塞模式运行,进一步缩短列车运行间隔。
另外,CBTC系统可以进一步优化列车驾驶的节能算法,提高节能效果。
CBTC目前已成为铁路运输及信号的技术人员和管理人员极度关注的问题, CBTC能得到如此广泛的推广和应用,主要和CBTC的使用特点有关系。
1. 安全方面目前TBTC系统中的控制停息流是开环的,即发送者只管发送,并不能确切知道接收者是否真正接收到所需信息,这并不能保证行车安全。
CBTC的特点(点击开始播放)2. 运输效率方面由于TBTC系统是固定自动闭塞系统,所有闭塞分区一经设计计算好,信号机就有固定位置,而每个闭塞分区的长度要求完全满足最坏列车的运行安全的需要。
所谓最坏列车,指它的牵引吨位是设计书中规定最重的,制动率也最低,有规定的运行速度,并且这种情况下在该地区的坡道值和弯道值条件下能够在该闭塞分区内刹住车。
这些条件显然对于“好车”(主要是牵引吨位少、制动效率好等)有潜在的运输效率。
一旦规定了最高运行速度,在投产后,实际速度必须在规定范围之下。
因此,即使存在线路桥梁、车辆、机车有提速的可能,信号也限制了它们的发展,使得运输效率受到限制,除非重新进行设计计算。
3. 工程设计方面在信号闭塞分区长度设计,即区间信号机的布置有严格的牵引计算来规定,工程设计人员必须一个闭塞区接着一个闭塞区进行设计。
如果在投产后意欲提高运量,提高运行速度,加大运行密度,必须严格核实闭塞分区工程的可能性,这是比较费周折的。
4. 信息方面随着信息社会的发展,对在线路上运行的列车,调度、旅客和货主三者愈来愈希望能得到它们的实时信息,以便调度员决定要否修正运行图,旅客能知道列车是否晚点,货主能知道托运货物何时能达目的地等等。
5. 投资方面在一次投资方面,希望减少因敷设电缆所需的40%的资金,并且希望新系统的性能/价格要比原有的更高;在日常维护投资开销方面,希望提高劳动生产率来减少维护费用。
6. 在天气影响方面希望避免晴天、雨天、下雪等影响,对原轨道电路必须经常作适当调整,以避免道碴受这些条件影响而带来不稳定性,由此可能造成不安全性。
7. 抗干扰方面希望减少在TBTC系统中轨道电路受牵引回流带来的干扰,以致使系统可能带来不稳定性和不安全性。