当前位置:文档之家› 数列解题方法大全

数列解题方法大全

数列方法大全一、求通项公式各种数列问题在很多情形下,就是对数列通项公式的求解。

特别是在一些综合性比较强的数列问题中,数列通项公式的求解问题往往是解决数列难题的瓶颈。

类型1 )(1n f a a n n +=+解法:把原递推公式转化为)(1n f a a n n =-+,利用累加法(逐差相加法)求解。

例1. 已知数列{}n a 满足211=a ,1n n a a n +=+,求n a 。

变式: 已知数列1}{1=a a n 中,且a 2k =a 2k -1+(-1)K , a 2k+1=a 2k +3k , 其中k=1,2,3,……. (I )求a 3, a 5;(II )求{ a n }的通项公式. 类型2 n n a n f a )(1=+ 解法:把原递推公式转化为)(1n f a a nn =+,利用累乘法(逐商相乘法)求解。

例2:已知数列{}n a 满足321=a ,n n a n n a 11+=+,求n a 。

变式:(2004,全国I,理15.)已知数列{a n },满足a 1=1,1321)1(32--+⋅⋅⋅+++=n n a n a a a a (n ≥2),则{a n }的通项1___n a ⎧=⎨⎩12n n =≥类型3 q pa a n n +=+1(其中p ,q 均为常数,)0)1((≠-p pq )。

解法(待定系数法):把原递推公式转化为:)(1t a p t a n n -=-+,其中pqt -=1,再利用换元法转化为等比数列求解。

例3:已知数列{}n a 中,11=a ,321+=+n n a a ,求n a .类型4 nn n q pa a +=+1(其中p ,q 均为常数,)0)1)(1((≠--q p pq )。

(或1n n n a pa rq +=+,其中p ,q, r 均为常数) 。

解法:一般地,要先在原递推公式两边同除以1+n q,得:qq a q p q a n n n n 111+•=++引入辅助数列{}n b (其中nnn qa b =),得:qb q p b n n 11+=+再待定系数法解决。

例4:已知数列{}n a 中,651=a ,11)21(31+++=n n n a a ,求n a 。

类型5 递推公式为n n n qa pa a +=++12(其中p ,q 均为常数)。

(待定系数法):先把原递推公式转化为)(112n n n n sa a t sa a -=-+++其中s ,t 满足⎩⎨⎧-==+q st pt s 例5:已知数列{}n a 中,11=a ,22=a ,n n n a a a 313212+=++,求n a 。

类型6 递推公式为n S 与n a 的关系式。

(或()n n S f a =)解法:这种类型一般利用⎩⎨⎧≥⋅⋅⋅⋅⋅⋅⋅-=⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=-)2()1(11n S S n S a n n n 与)()(11---=-=n n n n n a f a f S S a 消去n S )2(≥n 或与)(1--=n n n S S f S )2(≥n 消去n a 进行求解。

例6:已知数列{}n a 前n 项和2214---=n n n a S .(1)求1+n a 与n a 的关系;(2)求通项公式n a . 类型7 b an pa a n n ++=+1)001(≠≠,a 、p解法:这种类型一般利用待定系数法构造等比数列,即令)()1(1y xn a p y n x a n n ++=++++,与已知递推式比较,解出y x ,,从而转化为{}y xn a n ++是公比为p 的等比数列。

例7:设数列{}n a :)2(,123,411≥-+==-n n a a a n n ,求n a .类型8 rn n pa a =+1)0,0(>>n a p解法:这种类型一般是等式两边取对数后转化为q pa a n n +=+1,再利用待定系数法求解。

例8:已知数列{n a }中,2111,1n n a aa a ⋅==+)0(>a ,求数列{}.的通项公式n a 类型9 )()()(1n h a n g a n f a n nn +=+解法:这种类型一般是等式两边取倒数后换元转化为q pa a n n +=+1。

例9:已知数列{a n }满足:1,13111=+⋅=--a a a a n n n ,求数列{a n }的通项公式。

例10:已知数列}{n a 满足性质:对于,324,N 1++=∈-n n n a a a n 且,31=a 求}{n a 的通项公式.类型10 q pn a a n n +=++1或nn n pq a a =⋅+1解法:这种类型一般可转化为{}12-n a 与{}n a 2是等差或等比数列求解。

例11:(I )在数列}{n a 中,n n a n a a -==+6,111,求n a(II )在数列}{n a 中,nn n a a a 3,111==+,求n a类型11周期型 解法:由递推式计算出前几项,寻找周期。

例12:若数列{}n a 满足⎪⎪⎩⎪⎪⎨⎧<≤-≤≤=+)121(,12)210(,21n n n n n a a a a a ,若761=a ,则20a 的值为_______。

二、求和数列是高中代数的重要内容,又是学习高等数学的基础. 在高考和各种数学竞赛中都占有重要的地位. 数列求和是数列的重要内容之一,除了等差数列和等比数列有求和公式外,大部分数列的求和都需要一定的技巧.类型1.利用常用求和公式求和: 利用求和公式求和是数列求和的最基本最重要的方法. 1、 等差数列求和公式:d n n na a a n S n n 2)1(2)(11-+=+=2、 等比数列求和公式:⎪⎩⎪⎨⎧≠--=--==)1(11)1()1(111q q q a a qq a q na S n nn3、 )1(211+==∑=n n k S nk n 4、)12)(1(6112++==∑=n n n k S n k n 5、213)]1(21[+==∑=n n k S nk n [例1] 已知3log 1log 23-=x ,求⋅⋅⋅++⋅⋅⋅+++nx x x x 32的前n 项和. [例2] 设S n =1+2+3+…+n ,n ∈N *,求1)32()(++=n nS n S n f 的最大值.类型2.错位相减法求和:这种方法是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列{a n ·b n }的前n 项和,其中{ a n }、{ b n }分别是等差数列和等比数列.[例3] 求和:132)12(7531--+⋅⋅⋅++++=n n x n x x x S[例4] 求数列⋅⋅⋅⋅⋅⋅,22,,26,24,2232n n前n 项的和. 类型3.倒序相加法求和:这是推导等差数列的前n 项和公式时所用的方法,就是将一个数列倒过来排列(反序),再把它与原数列相加,就可以得到n 个)(1n a a +. [例5] 求89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++的值类型4.分组法求和:有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可. [例6] 求数列的前n 项和:231,,71,41,1112-+⋅⋅⋅+++-n aa a n ,… 类型5.裂项相消法:这是分解与组合思想在数列求和中的具体应用. 裂项法的实质是将数列中的每项(通项)分解,然后重新组合,使之能消去一些项,最终达到求和的目的. 通项分解(裂项)如:(1))()1(n f n f a n -+= (2)n n n n tan )1tan()1cos(cos 1sin -+=+ (3)111)1(1+-=+=n n n n a n (4))121121(211)12)(12()2(2+--+=+-=n n n n n a n (5)])2)(1(1)1(1[21)2)(1(1++-+=+-=n n n n n n n a n(6)nn n n n n n n S n n n n n n n n n a 2)1(11,2)1(12121)1()1(221)1(21+-=+-⋅=⋅+-+=⋅++=-则 [例7]求数列⋅⋅⋅++⋅⋅⋅++,11,,321,211n n 的前n 项和.[例8]在数列{a n }中,11211++⋅⋅⋅++++=n nn n a n ,又12+⋅=n n n a a b ,求数列{b n }的前n 项的和.[例9]求证:1sin 1cos 89cos 88cos 12cos 1cos 11cos 0cos 12=+⋅⋅⋅++ 类型6.合并法求和:针对一些特殊的数列,将某些项合并在一起就具有某种特殊的性质,因此,在求数列的和时,可将这些项放在一起先求和,然后再求S n . [例10]求cos1°+ cos2°+ cos3°+···+ cos178°+ cos179°的值.[例11]在各项均为正数的等比数列中,若103231365log log log ,9a a a a a +⋅⋅⋅++=求的值. 类型7.利用数列的通项求和:先根据数列的结构及特征进行分析,找出数列的通项及其特征,然后再利用数列的通项揭示的规律来求数列的前n 项和,是一个重要的方法. [例12] 求11111111111个n ⋅⋅⋅+⋅⋅⋅+++之和. [例13] 已知数列{a n }:∑∞=+-+++=11))(1(,)3)(1(8n n n n a a n n n a 求的值. 三、课后作业112342421{},1(1,2,3,)3(1),,{}.(2)n n n n n na n S a a S n a a a a a a a +===+++1.数列的前项为且,求的值及数列的通项公式求1112{},1(1,2,).:(1){};(2)4n n n n nn n n a n S a a S n nS nS a +++====2.数列的前项和记为已知,证明数列是等比数列*121{}(1)()3(1),;(2):{}.n n n n n a n S S a n N a a a =-∈3.已知数列的前项为,求求证数列是等比数列11211{},,.2n n n n a a a a a n n+==++4.已知数列满足求112{},,,.31n n n n na a a a a n +==+5.已知数列满足求111511{},,().632n n n n n a a a a a ++==+6.已知数列中,求111{}:1,{}.31n n n n n a a a a a a --==⋅+7.已知数列满足,求数列的通项公式2222123{}S 21,n n n n a a a a a =-++++8.等比数列的前n 项和求555555555(10 51)95n-9.求和:,,,,,;10.求和:1111447(32)(31)n n+++⨯⨯-⨯+11.求和:111112123123n ++++= +++++++练习12、设{}na是等差数列,{}nb是各项都为正数的等比数列,且111a b==,3521a b+=,5313a b+=(Ⅰ)求{}na,{}nb的通项公式;(Ⅱ)求数列nnab⎧⎫⎨⎬⎩⎭的前n项和n S.。

相关主题