当前位置:文档之家› 冈萨雷斯数字图像处理第三版第四章(精校版)..

冈萨雷斯数字图像处理第三版第四章(精校版)..

原始图像
D0=80的高斯低通滤波器 修复字符
D0=80
GLPF
用于机器识别系统识别断裂字符的预处理
人脸图像处理
原图像 D0=100的GLPF滤波, 细纹减少 D0=80的GLPF滤波, 细纹减少
卫星、航拍图像处理
佛罗里达亮 墨西哥湾暗
奥基乔 比湖 D0=30的GLPF滤波图 D0=10的GLPF滤波图
频域滤波:
G(u, v) F (u, v) H (u, v)
1
5、变换到空间域: gPQ ( x, y)
6、取实部:
x y g ( x , y ) real g ( x , y ) ( 1) P Q 7、取消输入图像的乘数: p
real g P Q ( x , y )
g (x , y)
g ( x , y)
1
H (u, v)F (u, v)
陷波滤波器(带阻滤波)
M N 0 ( u, v ) ( , ) H ( u, v ) 2 2 其它 1
设臵F(0,0)=0(结果图像的平均值为零),而保留其 它傅里叶变换的频率成分不变 由于图像平均值为0而产生整体平均灰度级的降低, 因此几乎没有平滑的灰度级细节
f ( x , y )★ h( x , y )
M 1 N 1 m 0 n 0
f ( m , n)h( x m , y n)
(4.6 23)
对比空间域滤波:在M×N的图像f上,用m×n的滤波器进行线 a b 性滤波 g ( x, y ) w( s, t ) f ( x s, y t ) ( 3.4 1)
原始图
D0=10的ILPF滤波 损失能量为8%
D0=30的ILPF滤波 损失能量为5.4%
D0=60的ILPF滤波 损失能量为3.6%
D0=160的ILPF滤波 损失能量为2%
D0=460的ILPF滤波 损失能量为0.5%
理想低通滤波器举例——具有振铃现象
a ) 半径为10的频 域ILPF
b ) 半径为10空域 ILPF
从幅度谱中我们可以看出明亮线和原始图像中对应的轮廓
线是垂直的。如果原始图像中有圆形区域那么幅度谱中也
呈圆形分布。
傅里叶频谱显示了±450的强边缘,在垂直轴偏左的 部分有垂直成分(对应两个氧化物突起)。
频率域滤波的基本步骤 DFT
F (u , v) 滤波器 H (u , v) H (u , v) F (u , v)
频率域高斯低通滤波器函数
H (u) Ae
u2 /2 2
(4.7 5)
(4.7 6)
对应空间域高斯低通滤波器为 h( x)
2 Ae
2 2 2 x2
频率域高斯高通滤波器函数
H (u) Ae
2 u2 /21
Be
2 u2 /2 2
(4.7 7)
A B , 1 2
f ( x, y) MN f ( x, y)
( 4.6 21)
②当从变换的原点移开时,对低频对应着图像的慢变化分量, 如图像的平滑部分
③进一步离开原点时,较高的频率对应图像中变化越来越 快的灰度级,如边缘或噪声等尖锐部分
F (u, v) F (u, v) e
i ( u,v )
1 D( u, v ) D0 H ILPF ( u, v ) 0 D( u, v ) D0
频率域的中心在 离如下
P Q ( , ) 2 2
, D0 0 (4.8 1)
,从点(u,v)到中心(原点)的距
P 2 Q 2 D( u, v ) ( u ) ( v ) 2 2
第 4章
频率域滤波基础
4.7.1、频率域的其他特性:
F ( u, v )
M 1 N 1 x 0 y 0
f ( x , y )e
i 2 (
ux vy ) M N
①变化最慢的频率成分(u=v=0)对应一幅图像的平均灰度级
F (0 , 0 )
M 1 N 1 x 0 y 0
1 2
(4.8 2)
4.8.2 布特沃思低通滤波器
它的特性是连续性衰减,而不象理想滤波器那样陡峭变化,
即明显的不连续性。因此采用该滤波器滤波在抑制噪声的 同时,图像边缘的模糊程度大大减小,没有振铃效应产生
布特沃斯低通滤波器举例
原始图
D0=10的BLPF滤波
D0=30的BLPF滤波
D0=60的BLPF滤波

原点在频率域的中心,半径为D0的圆包含%的功率
其中
100 u P ( u, v ) / PT (4.8 4) v
理想低通滤波器举例
①87%以上的功率(能量)集中在半径小于10的圆周内;
②随滤波器半径的增加,越来越少的功率被滤出掉,使模糊 减弱;
理想低通滤波器举例
fP Q ( x , y) ( 1) x y F (u P Q ,v ) 2 2
3、变换到频域
x y F ( u, v ) f ( x , y )( 1) P Q
P Q H ( u , v ) ( 4、生成一个实的、中心对称的滤波器 PQ ,中心在 , ) 2 2
H LP (u, v ) FPQ (u, v ) ( 1) x y real g PQ ( x , y ) gM N ( x, y)
图4.36
4.7.4 空间域滤波和频域滤波之间的对应关系
大小为M×N的两个函数f(x,y)和h(x,y)的频率域滤波表示为: H (u, v ) F (u, v ) 由卷积定理,该运算对应的空间域运算为:
结论:图a和b的振铃问题十分明显
4.9.2 巴特沃思高通滤波器
n阶巴特沃思高通滤波器(BHPF)定义如下
1 H BHPF ( u, v ) 2n 1 [ D0 D( u, v )]
H hp ( u, v ) 1 H lp ( u, v ) 1 D( u, v ) / D0 1 D ( u , v ) / D 0
二维高斯低通滤波器(GLPF)定义如下
H ( u, v ) e
(4.8 7)
当D(u,v)=D0时,滤波器下降到它最大值的0.607处
高斯低通滤波器举例
原始图
D0=10的GLPF滤波
D0=30的GLPF滤波
D0=60的GLPF滤波
D0=160的GLPF滤波
D0=460的GLPF滤波
字符识别举例
1 2
(4.8 2)
理想低通滤波器
说明:在半径为D0的圆内,所有频率没有衰减地通过滤 波器,而在此半径的圆之外的所有频率完全被衰减掉
理想低通滤波器
总图像功率值PT 其中:
PT P ( u, v ) (4.8 3)
u 0 v 0
2 2 2
P 1 Q 1
P ( u, v ) F ( u, v ) R ( u, v ) I ( u, v )
例4.15
图4.38
h33 ( x, y)
H (u, v ) : 602 602
g( x, y) 1 H (u, v)F (u, v) h33 ( x, y)☆ f602602 ( x, y)
H 33 (u, v )
图4.39
空域线性滤波 的结果
4.8.1
理想低通滤波器
截断傅里叶变换中的所有处于指定距离D0之外的高频成分
c ) 图像b)的水平 扫描线灰度变化
4.8.2 布特沃思低通滤波器
n阶布特沃思低通滤波器(BLPF)定义如下
1 H BLPF ( u, v ) 1 [ D( u, v ) D0 ]2 n
(4.5 8)
D0为截至频率距原点的距离,D(u,v)是点(u,v)距原点的距离。
P 2 Q 2 D( u, v ) ( u ) ( v ) 2 2
该高通滤波器原点为 0,因此几乎没有平 滑的灰度级细节,且 图像较暗。
பைடு நூலகம்
在高通滤波器中加 入常量,以使F(0,0) 不被完全消除。 (防止直流项消除, 保持色调)
错误的填充图像会导致错误的结果
4.7.3 频率域的滤波步骤:
1、对要滤波的图像 f M N ( x, y) 进行填充得到 f PQ ( x, y) ,典 型地:P=2M,Q=2N x y ( 1) 2、填充图像,用 乘以输入图像进行中心变换
IDFT
前处理
后处理
f (x , y)
g (x , y)
思想:通过滤波器函数以某种方式来修改图像变换, 然后通过取结果的反变换来获得处理后的输出图像
4.7.2、频率域滤波基础: DFT
F (u , v) 滤波器 H (u , v)
IDFT
H (u , v) F (u , v) 后处理
前处理
f (x , y)
对应空间域高斯高通滤波器为
h( x ) 2 1 Ae
2 2 2 2 1 x
2 2 Be
2 2 2 2 2 x
(4.7 8)
图4.37
频域高斯低通滤波器 频域高斯高通滤波器
空域高斯低通滤波器及模板
空域高斯高通滤波器及模板
f ( x, y ) : 600 600
F (u, v ) : 600 600
s a t b

(4.6-23)和(3.4-1)本质上是相似的;相差之处只在于:常数、负号及求和的 上、下限; 在实践中,我们宁愿使用(3.4-1)和较小的滤波器模板来实现滤波处理; 滤波在频率域中更为直观,可以在频率域指定滤波器,做反变换,然后在空 间域使用结果滤波器作为在空间域构建小滤波器模板的指导;
相关主题