当前位置:文档之家› 1-3-半导体封装件的可靠性评价方法

1-3-半导体封装件的可靠性评价方法

1-3-半导体封装件的可靠性评价方法
半导体封装件的可靠性评价方法
Lunasus 科技公司,佐土原宽
Lunasus 科技公司细川丰
本章将依据半导体封装件可靠性评价的基本考虑方法,以故障机理为基础的实验条件介绍,并根据韦布图来解说可靠性试验下的(产品)寿命推导方法。

封装件开发及材料变化过程中的可靠性评价方法
为实现半导体封装件功能和电气特性的提高,在推动多引脚化的同时,也要发展高密度封装化下的小型、薄型化。

最近,搭载多个芯片的SiP(System in Package,系统级封装)和芯片尺寸(与封装尺寸)非常相近的CSP(Chip Size Package,芯片级封装)已开始量产,封装件的构造多种多样。

另外,为达成封装件低成本化和环保的要求,采用规格更高的封装件材料的开发正在活跃起来。

但封装件构造的复杂化和新型材料的使用不能对制造品质和可靠性造成影响。

这里将对新型封装件的开发和材料改变下的可靠性评价方法进行解说。

最近的半导体封装件多数属于树脂灌封型,对半导体单体的可靠性评价包括,高温保存(或动作)实验,耐湿性实验以及温度循环实验。

另外,对于有可能要进行表面装配的高密度封装器型,需考虑焊接装配过程中的热应力情况,因此焊锡耐热性实验也是不可缺少的。

这些可靠性试验,是对半导体封装件在实际使用过程中所预想发生的各种故障进行短时间评价的加速性实验方法。

接下来需要先确定半导
体所发生的各种故障的主要加速原因是什么后才能进行实验。

例如,对于树脂封装件来讲,湿度(水分)是造成硅芯片上金属线路受到腐蚀(图1)的主要原因之一,而温度可以加快水分浸入封装件内的速度,所以高温、高湿下的实验才有效果。

与此同时,在电压也是故障主因的场合,有必要进行高温、高湿下的通电实验。

如上所述,对于封装件相关的各种故障,通过对机理的解析,找出加速实验的主要因子,设定合适的可靠性实验条件,这些就是可靠性评价的基础。

针对封装件构造的可靠性试验
正如开头所述,为实现封装件的高功能、高密度化,封装件的外观形状的主流是QFP(Quad Flat Package,四面扁平封装)和BGA
(Ball Grid Array,球栅阵列),BGA对多引脚化更有优势。

ASIC (专业集成电路)制品重点发展BGA方式,随着组装技术的提高,正朝着追求更高功能的SiP方向发展。

这种构造的一个例子由图2所示。

(a)是积层型SiP,最下层的ASIC是以倒装芯片的方式与基板相连接,中层(SDRAM )和上层(NV记忆)芯片借助芯片粘接材料来固定,通过金(属)键合方式完成与基板的电气连接。

由此可见,因存在多个接触界面,故存在高的故障潜在风险,所以在封装件构造的设计阶段考虑制定可靠性是很重要的。

因此,通过实施针对封装件构造和使用材料的FMEA(Failure Mode and Effect Analysis,失效模
式与效果分析)能够确认其可靠性试验,检讨故障发生机理。

表1收集了多年来明确的、与封装件有关的典型故障机理和可靠性试验内容。

以往是
通过实施高温动作实验和高温保存实验来验证器件加工流程的可靠性,针对汽车电装系统等的应用,高温环境下的封装件可靠性需要高度重视,封装件的可靠性评价是必须的(实验)项目。

再者,现在所使用的封装树脂材料,要求针对封装件开裂实行温度循环实验,针对金属线路腐蚀并增大其边际安全实行耐湿性实验,BGA和CSP在基板上的铜线路断线以及离子迁移也成为悬念。

除了表1所展示的内容外,针对封装件构造的跌落实验和振动实验也是很有必要的。

铝/金连接部故障的可靠性评价
很多的可靠性试验是针对磨损故障的,可靠性试验的最终判断目的是明确实际使用环境下的产品寿命。

在这里,将介绍针对铝垫与金线连接部分的合金(共晶)成长导致电阻增大(断线)的故障现象的可靠性评价实例。

这种故障现象是在高温期间,铝和金的共晶层会生长,脆弱的Au4Al与树脂中的溴元素(Br)会产生高温氧化腐蚀。

图3给出了铝垫与金线连接部分的大概图形。

铝从铝垫中溢出,共晶层下部是Au5Al2,与金相连接的上层形成Au4Al共晶层,此共晶层在溴的作用下,最终生成电阻高的Al2O3,从而导致断线。

根据该故障的机理,可以通过实施高温保存实验这种加速评估的方法,分别推定出在3种高温条件下(150℃、175℃和200℃)的产
品精确的寿命。

表2是实验结果,图4是实验韦布图。

温度与化学反应的依存性可以由阿仑尼乌斯公式表示出,以下是阿仑尼乌斯方程式,L表示故障出现的时间(寿命)。

L= A exp(Ea/ kT)……………(式1)
A:常数,Ea:活化能--(eV),
k:波尔曼常数(8.6157ⅹ10E5〈Ev/K〉),
T:绝对温度(K)
公式1的两边取对数可以得到公式2.
LnL= A+ Ea/ kT……………………………..(式2)
在这里,设L1是温度T1下的寿命,L2是温度为T2下的寿命,即得出:
LnL1= A+ Ea/ kT1……………………………..(式3)
LnL2= A+ Ea/ kT2……………………………..(式4)
(式3)—(式4)得到消除常数A的公式5.
LnL1—LnL2 = Ea(1/ kT1—1/ kT2)……..(式5)
因此,Ea的方程式如下:
Ea= Ln(L1/L2)/(1/ kT1—1/ kT2)………….. (式6)
由韦布图表来推算,0.1%的故障率所对应的时间(定义为寿命),在温度为200℃时的寿命是136小时,175℃时的寿命是581小时,以此类推,150℃时的寿命将是2442小时。

把该实验结果带入公式6,可以求出高温氧化腐蚀的活化能值,即:0.9—1.1eV。

图5是活化能在等于1.0eV时,温度与寿命的相关性图表。

本稿依据了封装器件可靠性评估的基本考虑方式,来解说通过加速实验来推导(产品)寿命的方法,为缩短故障发生的时间而采用极端的高应力环境来实施评估,而这种(高应力下的)故障在实际的使用环境下并不会发生,这就有必要十分慎重地对评估条件作出检讨。

相关主题