高中物理动量守恒定律练习题及答案一、高考物理精讲专题动量守恒定律1.如图:竖直面内固定的绝缘轨道abc ,由半径R =3 m 的光滑圆弧段bc 与长l =1.5 m 的粗糙水平段ab 在b 点相切而构成,O 点是圆弧段的圆心,Oc 与Ob 的夹角θ=37°;过f 点的竖直虚线左侧有方向竖直向上、场强大小E =10 N/C 的匀强电场,Ocb 的外侧有一长度足够长、宽度d =1.6 m 的矩形区域efgh ,ef 与Oc 交于c 点,ecf 与水平向右的方向所成的夹角为β(53°≤β≤147°),矩形区域内有方向水平向里的匀强磁场.质量m 2=3×10-3 kg 、电荷量q =3×l0-3 C 的带正电小物体Q 静止在圆弧轨道上b 点,质量m 1=1.5×10-3 kg 的不带电小物体P 从轨道右端a 以v 0=8 m/s 的水平速度向左运动,P 、Q 碰撞时间极短,碰后P 以1 m/s 的速度水平向右弹回.已知P 与ab 间的动摩擦因数μ=0.5,A 、B 均可视为质点,Q 的电荷量始终不变,忽略空气阻力,sin37°=0.6,cos37°=0.8,重力加速度大小g =10 m/s 2.求:(1)碰后瞬间,圆弧轨道对物体Q 的弹力大小F N ;(2)当β=53°时,物体Q 刚好不从gh 边穿出磁场,求区域efgh 内所加磁场的磁感应强度大小B 1;(3)当区域efgh 内所加磁场的磁感应强度为B 2=2T 时,要让物体Q 从gh 边穿出磁场且在磁场中运动的时间最长,求此最长时间t 及对应的β值.【答案】(1)24.610N F N -=⨯ (2)1 1.25B T = (3)127s 360t π=,001290143ββ==和 【解析】 【详解】解:(1)设P 碰撞前后的速度分别为1v 和1v ',Q 碰后的速度为2v 从a 到b ,对P ,由动能定理得:221011111-22m gl m v m v μ=- 解得:17m/s v =碰撞过程中,对P ,Q 系统:由动量守恒定律:111122m v m v m v '=+取向左为正方向,由题意11m/s v =-', 解得:24m/s v =b 点:对Q ,由牛顿第二定律得:2222N v F m g m R-=解得:24.610N N F -=⨯(2)设Q 在c 点的速度为c v ,在b 到c 点,由机械能守恒定律:22222211(1cos )22c m gR m v m v θ-+=解得:2m/s c v =进入磁场后:Q 所受电场力22310N F qE m g -==⨯= ,Q 在磁场做匀速率圆周运动由牛顿第二定律得:2211c c m v qv B r =Q 刚好不从gh 边穿出磁场,由几何关系:1 1.6m r d == 解得:1 1.25T B = (3)当所加磁场22T B =,2221m cm v r qB == 要让Q 从gh 边穿出磁场且在磁场中运动的时间最长,则Q 在磁场中运动轨迹对应的圆心角最大,则当gh 边或ef 边与圆轨迹相切,轨迹如图所示:设最大圆心角为α,由几何关系得:22cos(180)d r r α-︒-= 解得:127α=︒ 运动周期:222m T qB π=则Q 在磁场中运动的最长时间:222127127•s 360360360m t T qB παπ===︒此时对应的β角:190β=︒和2143β=︒2.两个质量分别为0.3A m kg =、0.1B m kg =的小滑块A 、B 和一根轻质短弹簧,弹簧的一端与小滑块A 粘连,另一端与小滑块B 接触而不粘连.现使小滑块A 和B 之间夹着被压缩的轻质弹簧,处于锁定状态,一起以速度03/v m s =在水平面上做匀速直线运动,如题8图所示.一段时间后,突然解除锁定(解除锁定没有机械能损失),两滑块仍沿水平面做直线运动,两滑块在水平面分离后,小滑块B 冲上斜面的高度为 1.5h m =.斜面倾角o 37θ=,小滑块与斜面间的动摩擦因数为0.15μ=,水平面与斜面圆滑连接.重力加速度g 取210/m s .求:(提示:o sin 370.6=,o cos370.8=)(1)A 、B 滑块分离时,B 滑块的速度大小. (2)解除锁定前弹簧的弹性势能.【答案】(1)6/B v m s = (2)0.6P E J = 【解析】试题分析:(1)设分离时A 、B 的速度分别为A v 、B v , 小滑块B 冲上斜面轨道过程中,由动能定理有:2cos 1sin 2B B B Bm gh m gh m v θμθ+⋅= ① (3分)代入已知数据解得:6/B v m s = ② (2分)(2)由动量守恒定律得:0()A B A A B B m m v m v m v +=+ ③ (3分) 解得:2/A v m s = (2分) 由能量守恒得:2220111()222A B P A A B Bm m v E m v m v ++=+ ④ (4分) 解得:0.6P E J = ⑤ (2分)考点:本题考查了动能定理、动量守恒定律、能量守恒定律.3.如图所示,两块相同平板P 1、P 2置于光滑水平面上,质量均为m 。
P 2的右端固定一轻质弹簧,左端A 与弹簧的自由端B 相距L 。
物体P 置于P 1的最右端,质量为2m 且可以看作质点。
P 1与P 以共同速度v 0向右运动,与静止的P 2发生碰撞,碰撞时间极短,碰撞后P 1与P 2粘连在一起,P 压缩弹簧后被弹回并停在A 点(弹簧始终在弹性限度内)。
P 与P 2之间的动摩擦因数为μ,求:(1)P 1、P 2刚碰完时的共同速度v 1和P 的最终速度v 2; (2)此过程中弹簧最大压缩量x 和相应的弹性势能E p 。
【答案】(1) 201v v =,4302v v = (2)L g v x -=μ3220,1620p mv E = 【解析】(1) P 1、P 2碰撞过程,动量守恒,102mv mv =,解得21v v =。
对P 1、P 2、P 组成的系统,由动量守恒定律 ,204)2(mv v m m =+,解得4302v v =(2)当弹簧压缩最大时,P 1、P 2、P 三者具有共同速度v 2,对P 1、P 2、P 组成的系统,从P 1、P 2碰撞结束到P 压缩弹簧后被弹回并停在A 点,用能量守恒定律)(2)2()2(21221221222021x L mg u v m m m mv mv ++++=⨯+⨯ 解得L gv x -=μ3220 对P 1、P 2、P 系统从P 1、P 2碰撞结束到弹簧压缩量最大,用能量守恒定律p 222021))(2()2(21221221E x L mg u v m m m mv mv +++++=+ 最大弹性势能162P mv E =注意三个易错点:碰撞只是P 1、P 2参与;碰撞过程有热量产生;P 所受摩擦力,其正压力为2mg【考点定位】碰撞模型、动量守恒定律、能量守恒定律、弹性势能、摩擦生热。
中档题4.如图所示,质量分别为m 1和m 2的两个小球在光滑水平面上分别以速度v 1、v 2同向运动,并发生对心碰撞,碰后m 2被右侧墙壁原速弹回,又与m 1碰撞,再一次碰撞后两球都静止.求第一次碰后m 1球速度的大小.【答案】【解析】设两个小球第一次碰后m 1和m 2速度的大小分别为和,由动量守恒定律得:(4分) 两个小球再一次碰撞,(4分)得:(4分)本题考查碰撞过程中动量守恒的应用,设小球碰撞后的速度,找到初末状态根据动量守恒的公式列式可得5.如图所示,一辆质量M=3 kg 的小车A 静止在光滑的水平面上,小车上有一质量m=l kg的光滑小球B ,将一轻质弹簧压缩并锁定,此时弹簧的弹性势能为E p =6J ,小球与小车右壁距离为L=0.4m ,解除锁定,小球脱离弹簧后与小车右壁的油灰阻挡层碰撞并被粘住,求:①小球脱离弹簧时的速度大小;②在整个过程中,小车移动的距离。
【答案】(1)3m/s (2)0.1m 【解析】试题分析:(1)除锁定后弹簧的弹性势能转化为系统动能,根据动量守恒和能量守恒列出等式得 mv 1-Mv 2=022121122P E mv Mv =+ 代入数据解得:v 1=3m/s v 2=1m/s (2)根据动量守恒和各自位移关系得12x xm M t t=,x 1+x 2=L 代入数据联立解得:24Lx ==0.1m 考点:动量守恒定律;能量守恒定律.6.一质量为的子弹以某一初速度水平射入置于光滑水平面上的木块并留在其中,与木块用一根弹性良好的轻质弹簧连在一起,开始弹簧处于原长,如图所示.已知弹簧被压缩瞬间的速度,木块、的质量均为.求:•子弹射入木块时的速度;‚弹簧被压缩到最短时弹簧的弹性势能. 【答案】22()(2)Mm aM m M m ++b【解析】试题分析:(1)普朗克为了对于当时经典物理无法解释的“紫外灾难”进行解释,第一次提出了能量量子化理论,A 正确;爱因斯坦通过光电效应现象,提出了光子说,B 正确;卢瑟福通过对粒子散射实验的研究,提出了原子的核式结构模型,故正确;贝克勒尔通过对天然放射性的研究,发现原子核有复杂的结构,但没有发现质子和中子,D 错;德布罗意大胆提出假设,认为实物粒子也具有波动性,E 错.(2)1以子弹与木块A 组成的系统为研究对象,以子弹的初速度方向为正方向,由动量守恒定律得:解得:.2弹簧压缩最短时,两木块速度相等,以两木块与子弹组成的系统为研究对象,以木块 的初速度方向为正方向,由动量守恒定律得:解得:由机械能守恒定律可知:.考点:本题考查了物理学史和动量守恒定律7.如图所示,一条带有圆轨道的长轨道水平固定,圆轨道竖直,底端分别与两侧的直轨道相切,半径R =0.5m ,物块A 以v 0=6m/s 的速度滑入圆轨道,滑过最高点Q ,再沿圆轨道滑出后,与直轨道上P 处静止的物块B 碰撞,碰后粘在一起运动,P 点左侧轨道光滑,右侧轨道呈粗糙段、光滑段交替排列,每段长度都为L =0.1m ,物块与各粗糙段间的动摩擦因数都为μ=0.1,A 、B 的质量均为m =1kg(重力加速度g 取10m/s 2;A 、B 视为质点,碰撞时间极短).(1)求A 滑过Q 点时的速度大小v 和受到的弹力大小F ; (2)若碰后AB 最终停止在第k 个粗糙段上,求k 的数值; (3)求碰后AB 滑至第n 个(n <k )光滑段上的速度v n 与n 的关系式. 【答案】(1)5m/s v =, F =22 N (2) k =45 (3)90.2m/s ()n v n n k =-<【解析】⑴物块A 从开始运动到运动至Q 点的过程中,受重力和轨道的弹力作用,但弹力始终不做功,只有重力做功,根据动能定理有:-2mgR =-解得:v ==4m/s在Q 点,不妨假设轨道对物块A 的弹力F 方向竖直向下,根据向心力公式有:mg +F =解得:F =-mg =22N ,为正值,说明方向与假设方向相同。