一、 感应电流产生的条件:1.电磁感应现象:能产生感应电流的现象称电磁感应现象。
2.产生感应电流的条件: 电路闭合;回路中磁通量发生变化;S B ∆=Φ-Φ=∆Φ12BS ∆=S B ∆∆=二、 感应电流方向的判定:1.右手定则:让磁力线穿过手心,大拇指指向导体的运动方向,四指所指的方向就是感应电流的方向。
例:在一个匀强磁场中有一个金属框MNOP ,且MN 杆可沿轨道滑动。
(1) 当MN 杆以速度v 向右运动时,金属框内有没有感应电流?(2) 若MN 杆静止不动而突然增大电流强度I ,金属框内有无感应电流?方向如何?2.楞次定律:感应电流具有这样的方向,就是感应电流的磁场总要阻碍引起感应电流的磁通量的变化。
(1) 阻碍的理解: 阻碍变化—— 增反减同阻碍不等于阻止,阻碍的是磁通量变化的快慢 阻碍相对运动(敌进我退,敌退我扰)O N MP(2) 应用楞次定律判断感应电流的方法:① 明确原磁场(B 原)方向;② 分析磁通量(ф)的变化;③ 确定感应电流的磁场(B 感)方向,④ 用右手螺旋法则判定感应电流(I 感)的方向。
例:磁通量的变化引起感应电流。
三、 法拉第电磁感应定律:1.在电磁感应现象中产生的电动势叫感应电动势,不管电路闭合与否,只要穿过电路的磁通量发生变化,电路中就有感应电动势。
闭合 感应电动势 有电流断开 感应电动势 无电流(1)tn ∆∆Φ=ε (感应电动势与磁通量的变化律成正比)——平均电动势 (2)① 向上平动、向下平动;② 向左平动、向右平动;③ 以AB 为轴向外转动;④ 以BC 为轴向外转动; ⑤ 以导线为轴转动;判断上列情况下的感应电流方向,若两导线呢?I P O M N MN 杆匀速向右运动: BLv t tL v B t S B t =∆∆=∆∆=∆∆Φ=ε (使用于B 、L 、v 相互垂直)(L 为有效长度) v BL =ε 即即=BLv ε(3) 自感电动势:tI L∆∆=ε L 为自感系数(①线圈面积;②匝数;③铁芯。
)电流强度增大时,感应电动势的方向与电流方向相反;电流强度减小时,感应电动势的方向与电流方向相同;阻碍的是电流的变化,电流将继续增大到应该达到的值。
注:自感现象是楞次定律“阻碍”含义的另一体现。
(4) 电磁感应现象中的能量守恒:大家再看这个图,ab 杆以速度v 向右运动切割磁力线,ab 杆上产生的感应电流方向是b →a ,在产生感应电流的同时,就会受到磁场对它的力的作用,安培力的方向是垂直于导线向左,为保证ab 向右匀速做切割磁力线运动就必须对ab 施加一个与安培力大小相等,方向相反的外力F 的作用,这样外力F 就要克服安培力做功,维持导体ab 匀速运动。
F 做正功 —— 动能增加;f 做负功 —— 动能减少;从而把机械能转化为电能,下面从能量的角度在此分析上题。
ab 杆向右匀速运动在t ∆时间,外力F 所做的功:vt IBL vt F S F W ⋅=⋅=⋅=设感应电动势为ε,在t ∆时间内,感应电流所做的功: t I W ∆⋅=ε'根据能量守恒:'W W = ⇒ BLv =ε说明法拉第电磁感应定律与能量的转化和守恒定律是相符的。
Χ Χ Χ Χ Χ Χ Χ Χ ΧΧ ΧΧ Χ Χ Χ Χ Χ Χa b附一、电磁感应现象1.产生感应电流的条件感应电流产生的条件是:穿过闭合电路的磁通量发生变化。
以上表述是充分必要条件。
不论什么情况,只要满足电路闭合和磁通量发生变化这两个条件,就必然产生感应电流;反之,只要产生了感应电流,那么电路一定是闭合的,穿过该电路的磁通量也一定发生了变化。
当闭合电路的一部分导体在磁场中做切割磁感线的运动时,电路中有感应电流产生。
这个表述是充分条件,不是必要的。
在导体做切割磁感线运动时用它判定比较方便。
2.感应电动势产生的条件。
感应电动势产生的条件是:穿过电路的磁通量发生变化。
这里不要求闭合。
无论电路闭合与否,只要磁通量变化了,就一定有感应电动势产生。
这好比一个电源:不论外电路是否闭合,电动势总是存在的。
但只有当外电路闭合时,电路中才会有电流。
二、楞次定律1.楞次定律感应电流具有这样的方向,即感应电流的磁场总要阻碍引起感应电流的磁通量的变化。
楞次定律解决的是感应电流的方向问题。
它关系到两个磁场:感应电流的磁场(新产生的磁场)和引起感应电流的磁场(原来就有的磁场)。
前者和后者的关系不是“同向”或“反向”的简单关系,而是前者“阻碍”后者“变化”的关系。
⑴从“阻碍磁通量变化”的角度来看,由磁通量计算式Φ=BS sinα可知,磁通量变化ΔΦ=Φ2-Φ1有多种形式,主要有:①S、α不变,B改变,这时ΔΦ=ΔB∙S sinα②B、α不变,S改变,这时ΔΦ=ΔS∙B sinα③B、S不变,α改变,这时ΔΦ=BS(sinα2-sinα1)当B、S、α中有两个或三个一起变化时,就要分别计算Φ1、Φ2,再求Φ2-Φ1了。
⑵从“阻碍相对运动”的角度来看,楞次定律的这个结论可以用能量守恒来解释:既然有感应电流产生,就有其它能转化为电能。
又由于是由相对运动引起的,所以只能是机械能减少转化为电能,表现出的现象就是“阻碍”相对运动。
⑶从“阻碍自身电流变化”的角度来看,就是自感现象。
在应用楞次定律时一定要注意:“阻碍”不等于“反向”;“阻碍”不是“阻止”。
2.右手定则。
对一部分导线在磁场中切割磁感线产生感应电流的情况,右手定则和楞次定律的结论是完全一致的。
这时,用右手定则更方便一些。
3.楞次定律的应用。
楞次定律的应用应该严格按以下四步进行:①确定原磁场方向;②判定原磁场如何变化(增大还是减小);③确定感应电流的磁场方向(增反减同);④根据安培定则判定感应电流的方向。
例1. 如图所示,有两个同心导体圆环。
内环中通有顺时针方向的电流,外环中原来无电流。
当内环中电流逐渐增大时,外环中有无感应电流?方向如何?解:由于磁感线是闭合曲线,内环内部向里的磁感线条数和内环外向外的所有磁感线条数相等,所以外环所围面积内(应该包括内环内的面积,而不只是环形区域的面积)的总磁通向里、增大,所以外环中感应电流磁场的方向为向外,由安培定则,外环中感应电流方向为逆时针。
例2. 如图所示,闭合导体环固定。
条形磁铁S 极向下以初速度v 0沿过导体环圆心的竖直线下落过程,导体环中的感应电流方向如何?解:从“阻碍磁通量变化”来看,原磁场方向向上,先增后减,感应电流磁场方向先下后上,感应电流方向先顺时针后逆时针。
从“阻碍相对运动”来看,先排斥后吸引,把条形磁铁等效为螺线管,根据“同向电流互相吸引,反向电流互相排斥”,也有同样的结论。
例3. 如图所示,O 1O 2是矩形导线框abcd 的对称轴,其左方有匀强磁场。
以下哪些情况下abcd 中有感应电流产生?方向如何? A.将abcd 向纸外平移 B.将abcd 向右平移 C.将abcd 以ab 为轴转动60° D.将abcd 以cd 为轴转动60°解:A 、C 两种情况下穿过abcd 的磁通量没有发生变化,无感应电流产生。
B 、D 两种情况下原磁通向外,减少,感应电流磁场向外,感应电流方向为abcd 。
例4. 如图所示装置中,cd 杆原来静止。
当ab 杆做如下那些运动时,cd 杆将向右移动?A.向右匀速运动B.向右加速运动C.向左加速运动D.向左减速运动 解:.ab 匀速运动时,ab 中感应电流恒定,L 1中磁通量不变,穿过L 2的磁通量不变化,L 2中无感应电流产生,cd 保持静止,A 不正确;ab向右加速运动时,L 2中的磁通量向下,增大,通过cd 的电流方向向下,cd 向右移动,B 正确;同理可得C 不正确,D 正确。
选B 、D例5. 如图所示,当磁铁绕O 1O 2轴匀速转动时,矩形导线框(不考虑重力)将如何运动?解:本题分析方法很多,最简单的方法是:从“阻碍相对运动”的角度来看,导线框一定会跟着条形磁铁同方向转动起来。
如果不计摩擦阻力,最终导线框将和磁铁转动速度相同;如果考虑摩擦阻力导线框的转速总比条形磁铁转速小些。
例6. 如图所示,水平面上有两根平行导轨,上面放两根金属棒a 、b 。
当条形磁铁如图向下移动时(不到达导轨平面),a 、b 将如何移动?解:若按常规用“阻碍磁通量变化”判断,则要根据下端磁极的极性分别进行讨论,比较繁琐。
而且在判定a 、b 所受磁场力时。
应该以磁极对它们的磁场力为主,不能以a 、b 间的磁场力为主(因为它们是受合磁场的作用)。
如果主注意到:磁铁向下插,通过闭合回路的磁通量增大,由Φ=BS 可知磁通量有增大的趋势,因此S 的相应变化应该使磁通量有减小的趋势,所以a 、b 将互相靠近。
这样判定比较简便。
例7. 如图所示,绝缘水平面上有两个离得很近的导体环a 、b 。
将条形磁铁沿它们的正中向下移动(不到达该平面),a 、b 将如何移动? 解:根据Φ=BS ,磁铁向下移动过程中,B 增大,所以穿过每个环中的磁通量都有增大的趋势,由于S 不可改变,为阻碍增大,导体环应该尽量远离磁铁,所以a 、b 将相互远离。
例8. 如图所示,在条形磁铁从图示位置绕O 1O 2轴转动90°的过程中,放在导轨右端附近的金属棒ab 将如何移动? 解:无论条形磁铁的哪个极为N 极,也无论是顺时针转动还是逆时针转动,在转动90°过程中,穿过闭合电路的磁通量总是增大的(条形磁铁内、外的磁感线条数相同但方向相反,在线框所围面积内的总磁通量和磁铁内部的磁感线方向相同且增大。
而该位置闭合电路所围面积越大,总磁通量越小,所以为阻碍磁通量增大金属棒ab 将向右移动。
例9. 如图所示,a 、b 灯分别标有“36V 40W ”和“36V 25W ”,闭合电键调节R,能使a 、b都正常发光。
断开电键后重做实 ab验:电键闭合后看到的现象是什么?稳定后那只灯较亮?再断开电键,又将看到什么现象?解:闭合瞬间,由于电感线圈对电流增大的阻碍作用,a 将慢慢亮起来,b 立即变亮。
这时L 的作用相当于一个大电阻;稳定后两灯都正常发光,a 的功率大,较亮。
这时L 的作用相当于一只普通的电阻(就是该线圈的内阻);断开瞬间,由于电感线圈对电流减小的阻碍作用,通过a 的电流将逐渐减小,a 渐渐变暗到熄灭,而abRL 组成同一个闭合回路,所以b 灯也将逐渐变暗到熄灭,而且开始还会闪亮一下(因为原来有I a >I b ),并且通过b 的电流方向与原来的电流方向相反。
这时L 相当于一个电源。
例10. 如图所示,用丝线悬挂闭合金属环,悬于O 点,虚线左边有匀强磁场,右边没有磁场。
金属环的摆动会很快停下来。
试解释这一现象。
若整个空间都有向外的匀强磁场,会有这种现象吗? 解:只有左边有匀强磁场,金属环在穿越磁场边界时,由于磁通量发生变化,环内一定会有感应电流产生,根据楞次定律将会阻碍相对运动,所以摆动会很快停下来,这就是电磁阻尼现象。