当前位置:文档之家› 由于染料生产品种多精编

由于染料生产品种多精编

由于染料生产品种多精编Document number:WTT-LKK-GBB-08921-EIGG-22986由于染料生产品种多,并朝着抗光解、抗氧化、抗生物氧化方向发展,从而使染料废水处理难度加大。

染料废水处理难点:一是COD高,而BOD/COD值小,可生化性差;二是色度高,而成分复杂。

三是水质水量不稳定,排放具有间歇性。

印染废水的处理目标一般是COD的去除与脱色,但脱色问题难度更大。

3.脱色处理方法物理方法吸附法吸附法是利用多孔性的固体物质,使废水中的一种或多种物质被吸附在固体表面而去除的方法。

吸附脱色技术是依靠吸附剂的吸附作用来脱除染料分子的。

吸附按其作用力可分为物理吸附、化学吸附和离子交换吸附三种。

目前用于吸附脱色的吸附剂主要是靠物理吸附, 但离子交换纤维、改性膨润土等也有化学吸附作用。

常用的吸附剂包括可再生吸附剂如活性炭、离子交换纤维等和不可再生吸附剂如各种天然矿物(膨润土、硅藻土)、工业废料(煤渣、粉煤灰) 及天然废料(木炭、锯屑) 等。

传统的吸附剂是活性碳,活性炭具有较高的比表面积(500- 600 m2/g),它只对阳离子染料、直接染料、酸性染料、活性染料等水溶性染料具有较好的吸附性能。

活性炭去除水中溶解性有机物(分子量不超过400)非常有效,但它不能去除水中的胶体疏水性染料。

若废水BOD5>500mg/L,则采用吸附法是不经济的。

膨润土作为水处理中的吸附剂和絮凝剂,已被广泛用于印染废水脱色领域,近年来制成多种复合膨润土、VS型纤维和聚苯乙烯基阳离子交换纤维等,具有物理吸附和离子交换功能,且比表面大、离子交换速度快,易再生,对难处理的阳离子染料废水有很好的脱色效果,有些改性的膨润土的脱色效果甚至高于活性炭[4];某些集吸附与絮凝性能为一体的吸附剂如硅藻土复合净水剂也已开发;用电厂粉煤灰制成具有絮凝性能的改性粉煤灰,对疏水性和亲水性染料废水均具有很高的脱色率;另外工业废料(如煤渣、粉煤灰等)、天然废料(如木炭、木屑等)、植物秸秆(如玉米棒等)均对印染废水具有一定的吸附作用。

吸附法尤其适合难生化降解的纺织印染废水脱色处理,印染废水的吸附脱色技术是一项非常有效而又比较经济的方法。

活性炭吸附脱色技术不适合印染废水一级处理,只能用于深度脱色处理,活性炭处理成本高,再生困难,所以活性炭的再生技术是正在研究的课题,其中生物再生是研究的重点方向。

煤、炉渣吸附剂,原料来源广,成本低,但在处理印染废水之后存在二次污染,所以只适合与生化法或砂过滤等方法联合使用。

离子交换树脂对水溶性染料离子吸附特别有效,离子交换吸附剂的开发研制是今后的主要发展方向之一。

廉价、高效、因地制宜新型吸附材料的开发是一项很有前途的技术。

吸附法与其它处理方法的优化组合处理印染废水,脱色效果更佳。

[5]综上所述,吸附脱色的发展方向体现在两个方面: ①根据吸附机制开发、寻找新的吸附剂; ②对现有吸附剂的改性与活化, 以提高脱色效果和再生能力。

超滤法脱色超滤是利用一定的流体压力推动力和孔径在20~200üA 的半透膜实现高分子和低分子的分离。

超滤过程的本质是一种筛滤过程,膜表面的孔隙大小是主要的控制因素。

该法的优点是不会产生副作用,可以使水循环使用。

早在70 年代初期, 膜分离技术就尝试用来处理印染废水。

目前, 该方法可用于去除各种染料和添加剂。

但由于分离染料混合物的困难, 并未达到完美的程度。

在这种技术中,半透膜的性质起着决定性的作用。

就材料而言,膜有动态膜,纤维素类膜,聚砜超滤膜,荷电超滤膜或疏松反渗透膜。

[6](1)动态膜从处理效果和经济上讲,ZrO-PAA 动态膜是可行的。

但能耗较大,其渗透水及化学物质的再利用率可达88% 到96%。

(2) 纤维素类膜。

CA 膜的选择性随膜表面与各种染料互变异构体相互作用而发生变化,但膜材料本身在耐pH、耐温等方面仍然有所不足。

纤维素类膜在耐pH值、耐压、耐温度等方面优于CA ,用纤维素超滤膜反渗透处理染色废液,染料去除率97% 以上可实现水的循环使用,但反渗透所需的高压操作仍是它的不足。

(3) 聚砜超滤膜由于其良好的物理化学稳定性,有较大的应用前景。

使用聚砜超滤膜代替纤维素膜可实现高温操作, 回收染料减轻污染, 但仍未达到国家排放的标准。

(4) 荷电超滤膜或疏松反渗透膜是用来描述其分离性能介于反渗透和超滤之间的一种膜。

荷电超滤膜是以其化学结构含有荷电基团而定义的, 疏松反渗透膜是以其物理结构而命名, 它们往往指的一种膜。

对盐NaCl 截留只有2%~3% , 而对于500~2 000 分子量的物质,具有较高的分离率, 同时保持高的水通量。

一般染料的分子量正好在这种膜的截留范围, 特别是离子型染料。

该膜在低压下操作(10kg/cm 2) 耐pH值、耐压密、耐污染、耐温等方面都比较突出,前景广阔[7]。

辐射降解法电离辐射可有效地降解染料水溶液,辐射技术和其它技术有很好的协同作用。

与常规污染物处理技术相比,辐射技术在常温常压下进行,具有工艺简单、无二次污染等特点,对难降解有机污染物的处理更有其独特长处。

[8]用60Co γ射线辐照甲基橙和活性艳蓝KNR水溶液,辐照后染料水溶液的可见光区和紫外区的特征吸收峰随吸收剂量的增加而渐渐下降至接近零,说明辐射降解反应既破坏了染料分子的发色基团,同时也破坏了染料的有机分子结构。

脱色率和COD去除率均随吸收剂量的增加而增加。

过氧化氢与辐射有协同作用,在相同的吸收剂量下,脱色率和COD去除率均随过氧化氢的浓度增加而增加。

另外,该法pH值适用范围很广;溶液的初始浓度越大,COD去除和脱色效果越差;氧的存在可以促进染料分子的降解。

在同样辐照条件下,染料的辐射降解效果因染料分子的结构不同而略有不同[9]。

辐射法处理印染等难降解污水时虽然有机物的去除率高、设备占地小、操作简便,但用来产生高能粒子的装置价格昂贵,技术要求高,而且该方法能耗较大,能量利用率不高,若要真正投入实际运行,还需进行大量的研究工作。

物理化学法絮凝法印染废水的絮凝脱色技术, 投资费用低, 设备占地少, 处理量大, 是一种被普遍采用的脱色技术。

某印染厂采用混凝脱色- 悬浮曝气生物滤池工艺处理主要含活性染料的废水,原水CODCr, SS的平均质量浓度分别为296,285 mg/L 和平均色度为550倍, 处理后出水水质相应各项指标分别为40, 20 mg/L 和10 倍, 其去除率分别为87%, 92%和98%。

[10]在印染废水中使用的絮凝剂很多,大致可分为无机絮凝剂、有机絮凝剂和微生物絮凝剂三类,其中,有机絮凝剂还分为天然有机高分子絮凝剂、合成有机高分子絮凝剂。

由于印染废水水质比较复杂,无机单盐絮凝剂在水解絮凝过程中,未能完成具有优势絮凝效果的形态,投药量大,絮凝效果差;无机高分子絮凝剂可以较好地除去废水中大部分悬浮态染料,但对于水溶性染料中分子量小、不容易形成胶体的废水则难以处理;有机高分子絮凝剂对于水溶性染料等废水具有很好的脱色性能,但单独使用效果差,而且易于产生有毒物质;因此,开发研制价廉、无毒、高效的新型有机絮凝剂,已成为目前絮凝法的主要研究方向之一。

复合絮凝剂则能同时发挥几种絮凝剂的优点,使絮凝法用于印染废水处理既经济,又适用。

如将有机絮凝剂与无机絮凝剂复配使用,充分发挥有机高分子絮凝剂的吸咐架桥性能和无机絮凝剂的电性中和能力,可以使处理出水达到较好的效果。

此外,淀粉衍生物、木质素衍生物、羧甲基壳聚糖[11]等天然高分子具有无毒、原料广、价廉和可生物降解等优点,也得到科研工作者的高度重视。

另外,微生物絮凝剂是利用生物技术,从微生物体或其分泌物提取、纯化而获得的一种安全、高效,且能自然降解的新型水处理剂。

与普通的絮凝剂相比,有固液易于分离,沉淀少,适用性广等优点,因此微生物絮凝剂的研究正成为当今世界絮凝剂方面研究的重要课题[12]。

总之,高效、无毒、无害的环境友好性絮凝即将在印染废水处理中有广阔的应用前景。

絮凝法虽然是含染料废水处理的常用方法,但对于许多可溶性好的染料, 处理效果往往不佳。

因此, 复合絮凝法将成为工业废水处理工艺研究的主要内容和发展方向。

根据实际出水要求,采用适当的预处理和后处理手段,发挥絮凝工艺与其它工艺的协同工作的优势,以达综合治理的目的,这对于提高印染废水的处理效果,降低处理成本具有极其重要的意义。

然而,用絮凝法进行废水脱色依然存在以下几个方面的问题:产生大量的淤泥;由于废水水质变化大,每批废水脱色前均需要进行预试验,以确定最佳条件,提高了成本,又费时。

过量的阳离子絮凝剂会在废水中产生大量氮的化合物,它们对鱼类有毒且难以生物降解和硝酸化抑制,絮凝剂过量也可能导致沉淀重新溶解。

脱色效率低,不符合排放标准。

因此,实际生产中,应根据实际出水要求,采用适当的预处理和后处理手段,发挥混凝工艺与其它工艺的协同工作的优势,以达综合治理的目的,这对于提高印染废水的处理效果,降低处理成本具有极其重要的意义。

化学方法电化学法电化学法是处理印染废水的另一种有效的处理方法。

电化学法通过可溶性电极在阳极和阴极上发生电絮凝、电气浮和H的间接还原作用从而达到处理废水的目的。

电化学法处理印染废水具有设备小、占地少、运行管理简单、COD去除率高和脱色好等优点,但同时电化学法存在着能耗大、成本高和析氧析氢副反应等缺点。

近年来,随着电化学和电力工业的发展以及许多新型高析氧析氢过电位电极的发明,电化学法又重新引起人们的重视。

根据电极反应方式划分, 传统电化学方法可细分为内电解法、电絮凝和电气浮法、电氧化学。

内电解法是利用废水中有些组分易被氧化,有些组分易被还原,在有导电介质存在时,电化学反应便会自发进行,同时兼有絮凝、吸附、共沉淀等综合作用的一种废水处理方法[13]。

最着名的内电解法是铁屑法, 即将铸铁作为滤料, 使印染废水浸没或通过, 利用Fe 和FeC 与溶液的电位差, 发生电极反应, 产生较高化学活性新生态H, 能与印染废水多种组分发生氧化还原反应, 破坏染料发色结构, 而阳极产生的新生态Fe2+, 其水解产物有较强的吸附和絮凝作用。

该法不需要外加电源,操作简单,成本低廉,是种很有前途的处理方法。

电气浮法是以Fe、AL作阳极产生的H2将絮体浮起;而电絮法则是利用电极反应产生的Fe2+ 、Al3+实现絮凝脱色。

采用石墨、钛板等作极板, 对染料废水通电电解, 阳极产生O2或Cl2, 阴极产生H2。

通过O的氧化作用及H的还原作用破坏染料分子而使印染废水脱色, 脱色率可达98% 以上,COD去除率达80%以上。

国内重点研究的是电化学与其它方法相结合,其中较为有成就的是用絮凝复合床新技术处理高色度印染废水,对色度>10000倍的印染废水处理后,脱色率可达99%以上,CODCr去除率达75%。

相关主题