变电所防雷保护
每100km线路的年落雷次数N
N = ( b+4h ) Td / 10 [次/(100km· 年)]
为地面落雷密度; b为两根避雷线之间的距离; h为避雷线的平均对地高度; Td为雷暴日数
1、耐雷水平(I)
耐雷水平是指雷击线路时,其绝缘尚不至于发生闪络 的最大雷电流幅值或能引起绝缘闪络的最小雷电流幅 值,单位为kA。 我国标准规定的各级电压线路应有的耐雷水平值见 表8-1
为了防止避雷针对构架发生 反击,其空气间距S1应满足 下式要求 S U
A 1
E1
为了防止避雷针接地装置与 变电所接地网之间因土壤击 穿而连在一起,地下距离S2 亦应满足下式要求 S U
B 2
E2
E1、E2分别为空气间隙平均冲击击穿场强和土壤平均 冲击击穿场强。 用下面两个公式校核独立避雷针的空气间距和地中 距离 s2 0.3Ri s1 0.2Ri 0.1h
被保护绝缘与避雷器 之间的电压差 U,可 以利用图8-7中的接线 图来确定。 以电压波到达避雷器端子1为时间起点,u1=t t=T(波传过距离l 所需时间l/v),波到达设备端子2, 全反射。 u2=2(t-T)
t=2T,反射波到达1点,避雷器上的电压上升陡度加大 (mb段) 避雷器击穿电压 Ub= (2T)+2(tb-2T)=2 (tb-T) t=tb+T,避雷器限压效果对设备产生影响 U2=2[(tb+T)-T]=2tb 电压差 U =U2-Ub=2T=2l/v 或 U =U2-Ub=2T=2’l
N – 年落雷总数 Pa – 绕击率 P2 – 超过绕击耐压水平I2的雷电流 – 建弧率
(二)雷击档距中央的避雷线
雷击避雷线最严重的情况是雷击点处于档距中央时。 真正击中档距中央避雷线的概率只有10%左右。
雷击点电压最大值
U A Z g l a / 4v
可见UA仅仅取决于它的波前陡度,而与雷电流无关。
(二)降低杆塔接地电阻 提高线路耐雷水平和减少反击概率的主要措施。杆 塔的工频接地电阻一般为10~30Ω。
(三)加强线路绝缘 增加绝缘子串中的片数、改用大爬距悬式绝缘子、 增大塔头空气间距等等,但有相当大的局限性。一般 优先采用降低杆塔接地电阻的办法来提高线路耐雷水 平。 (四)耦合地线 作为一种补救措施,具有一定的分流作用和增大导 地线之间的耦合系数,因而能提高线路的耐雷水平和 降低雷击跳闸率。
三、变电所的进线段保护
保证在靠近变电所的一段不长(一般为l~2km)的线路 上不出现绕击或反击。对于那些未沿全线架设避雷线 的35kV及以下的线路来说,首先在靠近变电所(l~2km) 的线段上加装避雷线,使之成为进线段;对于全线有 避雷线的110km及以上的线路,将靠近变电所的一段 长2km的线路划为进线段。在进线段上, 加强防雷措 施、提高耐雷水平。 进线段的作用: 1)雷电过电压波在流过进线段时因冲击电晕而发生 衰减和变形,降低了波前陡度和幅值; 2)限制流过避雷器的冲击电流幅值
(三)自耦变压器的防雷保护
高压侧进波时,应在中压断路器 QF2的内侧装设一组阀式避雷器 (图8-14中的FV2)进行保护。 中压侧进波时,在高压断路器 QF1的内侧也应装设一组避雷器 (图8-14中的FV1)进行保护。
当中压侧接有出线时,还应 在AA′之间再跨接一组避雷器 (图8-14中的FV3)。
三、线路耐雷性能的分析计算
(一)绕击导线 雷闪绕过避雷线直接击中导线 的概率,称为绕击率Pα 。Pα之 值与避雷线对边相导线的保护角 α、杆塔高度ht及线路通过地区 的地形地貌等因素有关。
平原线路
Байду номын сангаас山区线路
lg P
lg P
ht
86
ht
86
3.9
3.35
绕击跳闸次数
n2 N P P2 (次/年)
第八章 电力系统防雷保护
电力系统的防雷保护包括了线路、变电所、发电厂等 各个环节。
第一节 架空输电线路防雷保护
输电线路耐雷性能的若干指标 线路雷害事故发展过程及防护措施 线路耐雷性能的分析计算
一条100km长的架空输电线路在一年中遭到数十次雷击。 线路的雷击事故在电力系统总的雷害事故中占有很大的 比重。 一、输电线路耐雷性能的若干指标
(三)雷击杆塔
击杆率:雷击杆塔次数与落雷总数的比值。
注入线路的总电流即为雷电流
i it ig
it为流经杆塔的电流,ig为流经避雷线的电流。
线路绝缘子串上所受到的雷电过电压包括四个分量:
1、杆塔电流it在横担以下的塔身电感La和杆塔冲击 接地电阻Ri上造成压降,使横担具有一定的对地电位
ua di ( Rii La ) dt
(四)变压器中性点的保护
110kV及以上的中性点有效接地系统 1、中性点为全绝缘时,一般不需采用专门的保护。 但在变电所只有一台变压器且为单路进线的情况下, 仍需在中性点加装一台与绕组首端同样电压等级的避 雷器。 2、当中性点为降级绝缘时,则必须选用与中性点绝 缘等级相当的避雷器加以保护,同时注意校核避雷器 的灭弧电压。 35kV及一下的中性点非有效接地系统 变压器的中性点都采用全绝缘,一般不设保护装置。
被保护绝缘与避雷器间的电气距离 l 越大、进波陡度 或′越大,电压差值 U 也就越大。
阀式避雷器动作以后有一个不大的电压降,然后保持 残压水平,由于被保护设备与避雷器间有距离,致使 电压波产生振荡,接近冲击截波,因此对于变压器类 电力设备来说,往往采用2s截波冲击耐压值作为他们 的绝缘冲击耐压水平。
二、阀式避雷器保护作用的分析
装设阀式避雷器是变电所对入侵雷电过电压波进行防 护的主要措施,它的保护作用主要是限制过电压波的 幅值。但是还需要有“进线段保护”与之配合。 阀式避雷器的保护作用基于三个前提: 1)它的伏秒特性与被保护绝缘的伏秒特性有良好的配 合 2)它的伏安特性应保证其残压低于被保护绝缘的冲击 电气强度 3)被保护绝缘必须处于该避雷器的保护距离之内。
2、雷击跳闸率(n )
雷击跳闸率是指在雷暴日数Td=40的情况下、100km 的线路每年因雷击而引起的跳闸次数,其单位为 “ 次 /(100km· 雷 暴 日 )” . 实 际 线 路 长 度 L 不 是 40 100km,雷暴日数也不正好是40时必须换算到某一相 同的条件下(100km,40雷暴日),才能进行比较。 但是雷电流超过了线路耐雷水平,只会引起冲击闪络, 只有在冲击闪络之后还建立工频电弧,才会引起线路 跳闸。 由冲击闪络转变成稳定工频电弧的概率为建弧率 ( ),它与沿绝缘子串或空气间隙的平均运动电压梯 度有关。可由下式求得 (4.5E 0.75 14) 10 2
第二节 变电所的防雷保护 变电所的直击雷保护 阀式避雷器保护作用的分析 变电所的进线段保护 变电所防雷的几个具体问题
线路的雷害事故往往只导致电网工况的短时恶化 ;变电所的雷害事故就要严重得多,往往导致大 面积停电。变电设备得内绝缘水平往往低于线路 绝缘,而且不具有自恢复功能,一旦发生击穿, 后果十分严重。变电所的防雷保护与输电线路相 比,要求更严格、措施更严密、可靠。
线路杆塔分流系数
2、塔顶电压utop沿着避雷线传播而在导线上感应出 来的电压u1。与上一分量ua相似,杆塔电流it造成的 塔顶电位
utop ( Rii Lt di ) dt
u1 kutop
3、雷击塔顶而在导线上产生的感应雷击过电压
u
' i (c)
ui ( c ) (1
二、线路雷害事故发展过程及防护措施
只要能设法制止上述发展过程中任一环节的实现, 就可避免雷击引起长时间停电事故。
输电线路上采用的各种防雷保护措施: (一)避雷线(架空地线) 110kV及以上架空输电线路防雷措施是沿全线架设 避雷线;35kV及以下的线路主要依靠架设消弧线 圈和自动重合闸来进行防雷保护。
(五)气体绝缘变电所防雷保护的特点
全封闭SF6气体绝缘变电所(GIS)的特点: 1)GIS绝缘的伏秒特性很平坦,其绝缘水平主要取决于 雷电冲击水平。采用氧化锌避雷器; 2)GIS结构紧凑,被保护设备与避雷器相距较近,比常 规变电所有利; 3)GIS的同轴母线筒的波阻抗小,过电压幅值和陡度都 显著变小,对变电所的进行波防护有利; 4)GIS内绝缘电场结构不均匀,易击穿,要求防雷保护 措施更加可靠、在绝缘配合中留有足够的裕度。
四、变电所防雷的几个具体问题
(一)变电所防雷接线
进线段提高耐雷性能的保护措施: 1)在进线保护段内,避雷线的保护角不宜超过20°。 2)采取措施以保证进线段的耐雷水平。
(二)三相绕组变压器的防雷保护 高压侧有雷电过电压波时,通过绕组间的静电耦合 和电磁耦合,低压侧出现一定过电压。在任一相低 压绕组加装阀式避雷器。
(五)消弧线圈 能使雷电过电压所引起来的一相对地冲击闪络不转 变成稳定的工频电弧,即大大减小建弧率和断路器的 跳闸次数。 (六)管式避雷器 仅用作线路上雷电过电压特别大或绝缘薄弱点的防 雷保护。它能免除线路绝缘的冲击闪络,并使建弧率 降为零。 (七)不平衡绝缘 一回路的三相绝缘子片数少于另一路的三相。 (八)自动重合闸 线路绝缘不会发生永久性的损坏或劣化。
绝缘冲击耐压水平应满足: U w( i ) U is U
阀式避雷器的保护距离:
lmax K
U w( i ) U is 2a '
K为变电所出线修正系数 避雷器具体安装点选择原则:“确保重点、兼顾一 般”。在诸多的变电设备中,需要确保的重点无疑 是主变压器,应尽可能把阀式避雷器装得离主变压 器近一些。
小 结
变电所的直击雷防护设计内容主要是选择避雷针的 支数、高度、装设位置、验算它们的保护范围、防 雷接地装置设计等。对于独立避雷针,则还有一个 验算它对相邻配电装置构架及其接地装置的空气间 距及地下距离的问题。 装设阀式避雷器是变电所对入侵雷电过电压波进行 防护的主要措施,但是还需要有“进线段保护”与 之配合。 进线段的作用:1)雷电过电压波在流过进线段时 因冲击电晕而发生衰减和变形,降低了波前陡度和 幅值;2)限制流过避雷器的冲击电流幅值