化学与能源
一、内容摘要。
化学与能源从各自诞生之日起就起着相互体现相互促进的作用。
通过上学期专业选修发电厂导论和本学期从分子水平看世界的课程的学习,对化学与能源的历史发展时期以及每个时期内二者的内容有了全新的认识。
当然,具体而深入的研究还得等大二大三随着学习的深入慢慢进行。
现在只能凭着浅薄的知识略谈一二,望老师谅解。
二、关键词:化学能源发展火力发电新能源
三、正文。
(一)化学的发展史和能源化学
古时候,为了他们的生存,在与的种种灾难进行抗争中,发现和利用了火。
原始人类从用火之时开始,由野蛮进入文明,同时也就开始了用化学方法认识和改造天然物质。
燃烧就是一种化学现象。
掌握了火以后,人类开始食用熟食;继而人类又陆续发现了一些物质的变化,如发现在翠绿色的等铜矿石上面燃烧炭火,会有红色的铜生成。
这样,人类在逐步了解和利用这些物质的变化的过程中,制得了对人类具有的产品。
人类逐步学会了制陶、冶炼;以后又懂得了酿造、染色等等。
这些有天然物质加工改造而成的制品,成为古代文明的标志。
在这些生产实践的基础上,萌发了古代化学知识。
后来在中国出现了炼丹术,到了公元前2世纪的时代,炼丹术已颇为盛行,大致在公元7世纪传到国家,与相融合而形成阿拉伯炼丹术,阿拉伯炼丹术于传入欧洲,形成欧洲炼金术,后逐步演进为近代的化学。
16世纪开始,欧洲工业生产蓬勃兴起,推动了医药化学和冶金化学的创立和发展,使炼金术转
向生活和实际应用,继而更加注意物质化学变化本身的研究。
1775年前后,用定量化学实验阐述了燃烧的,开创了定量化学时期,使化学沿着正确的轨道发展。
19世纪初,英国化学家提出近代,突出地强调了各种元素的原子的质量为其最基本的特征,其中量的概念的引入,是与古代原子论的一个主要区别。
近代原子论使当时的化学知识和理论得到了合理的解释,成为说明化学现象的统一理论。
接着意大利科学家提出分子概念。
自从用来研究化学,化学才真正被确立为一门科学。
由此可见,化学一开始的产生就是跟能量、能源有着不可磨灭的千丝万缕的联系了。
通过我们专业的发电厂概论的学习我们知道,直到现在,人们主要使用的化石燃料其本质还是利用燃料燃烧产生的热能来加热水产生高温蒸汽,然后利用蒸汽带动汽轮机转动做切割磁感线运动从而产生电能,传送给世界上的千万家庭。
燃烧,就是化学中的一个重要现象。
当然,实际上的化学能与热能电能之间的转化并没这么简单,我们在转化过程中还得研究如何提高能源转化的效率、如何减少转化过程中对环境的污染、如何在循环工作中保证催化剂和设备等硬件设施的正常运转与保养等等,一系列亟待解决的问题,都跟化学密不可分。
此外,除了火力发电,新能源也是与化学同在的一个新世纪的重要课题。
之前的新闻中看到科学家们在致力于研究能将水迅速大量分解为氧气和氢气的催化剂,还有的在研究利用生物质能发电,或者垃圾发电,这些都与化学息息相关。
而且我国也在发展新能源尤其是生物质能发电的方面有很大进展,全国很多地方电厂都已经引入这一项技术,诸如利用玉米等作物发电等等,已初见成效。
相信随着化学这门基础学科的飞速发展,新能源一定能在未来
的能源领域里唱起主角戏。
(二)能源产业发展同化学紧密联系
能源、材料和信息被称为人类社会发展的三大支柱。
所谓能源是指提供能量的自然资源。
人类的文明始于火的使用,燃烧现象是人类最早的化学实践之一,燃烧把化学与能源紧密地联系在一起。
人类巧妙地利用化学变化过程中所伴随的能量变化,创造了五光十色的物质文明。
一开始是属于柴草时期。
从火的发现到18世纪产业革命间,树枝杂草一直是人类使用的主要能源。
柴草不能烧烤食物,驱寒取暖,还被用来烧制陶器和冶炼金属。
紧接而来的是步入了煤炭时期。
煤炭的开采始于13世纪,而大规模开采并使其成为世界的主要能源则是18世纪中叶的事了。
1769年,瓦特发明蒸汽机,煤炭作为蒸汽机的动力之源而受到关注。
第一次产业革命期间,冶金工业、机械工业、交通运输业、化学工业等的发展,使煤炭的需求量与日俱增,直至20世纪40年代末,在世界能源消费中煤炭仍占首位。
现在我们处在第三阶段,石油时期。
第二次世界大战之后,在美国、中东、北非等地区相继发现了大油田及伴生的天然气,每吨原油产生的热量比每吨煤高一倍。
石油炼制得到的汽油、柴油等是汽车、飞机用的内燃机燃料。
世界各国纷纷投资石油的勘探和炼制,新技术和新工艺不断涌现,石油产品的成本大幅度降低,发达国家的石油消费量猛增。
到60年代初期,在世界能源消费统计表里,石油和天然气的消耗比例开始超过煤炭而居首位。
现在全球的趋势是石油使用居多,但是目前中国由于国内的资源配置等原因,火力发电主要原料仍为煤炭,火力发电也是国内产生电能的主要方式。
根据上学期的学习,我了解到炭火发电会带来诸多方面的副作用。
煤燃烧的危害主要是由四种: 1.温室效应,主要由二氧化碳引起,在所有相同质量的传统燃料(煤,石油,天然气)中煤产生的二氧化碳最多,煤中又以褐煤最盛。
同时要注意N 2O 也是温室气体,由煤燃烧时的氮元素产生,单位体积的危害量是CO 2的270
倍,由于含量少,被忽视。
2.酸雨,由煤中含有的硫和氮杂质,燃烧生成氧化物,溶于水生成酸雨。
3.富营养化,由氮的杂质生成的氧化物,在自然界中聚集。
4.粉尘。
这些问题不仅给电厂设备、工人健康带来危害,甚至会对整个地球的环境带来诸多不利的影响。
例如酸雨问题,目前化学上就采用脱硫的技术,生产相对洁净的煤炭以供燃烧:将煤中的硫元素用钙基等方法固定成为固体防止燃烧时生成SO 2。
通过对国内外脱硫技术以及国内电力行业引进脱硫工艺试点厂情况的分析研
究,目前脱硫方法一般可划分为燃烧前脱硫、燃烧中脱硫和燃烧后脱硫等3类。
双碱法脱硫方程式如下:
2NaOH+SO2→Na2SO3+H2O ; Na2SO3+SO2+H2O→2NaHSO3 ; Ca(OH)2 + Na2SO3 → 2 NaOH
+ CaSO3;4NaHSO3+2Ca(OH)2→2Na2SO3+2CaSO3·H2O+H2O
;2Na2SO3+O2
+2Ca(OH)2+4H2O→4NaOH+2CaSO4·2H2O 。
(三)新能源时期的化学 以上谈到的都是化石燃料为主体的传统能源产业中化学的重要作用,在新时期新能源的开发中,化学的作用照样至关重要。
化学在能源和资源的合理开发和高效安全利用中起关键作用。
在能源和资源方面,未来化学要研究高效洁净的转化技术和控制低品位燃料的化学反应;新能
源如太阳能以及高效洁净的化学电源与燃料电池等都将成为21世纪的重要能源,这些研究大多都需要从化学基本问题作起,否则,很难取得突破。
以燃料电池为例,由于燃料电池能将燃料的化学能直接转化为电能,因此,它没有像通常的火力发电机那样通过锅炉、、发电机的能量形态变化,可以避免中间的转换的损失,达到很高的发电效率。
这种电池由一种或多种化学溶液组成,其中插入两根称为电极的金属棒。
每一电极上都进行特殊的化学反应,电子不是被释出就是被吸收。
一个电极上的电势比另一个电极上的大,因此,如果这两个电极用一根导线连接起来,电子就会通过从一个电极流向另一个电极。
这样的电子流就是电流,只要电池中进行,这种就会继续下去。
发达都将大型燃料电池的开发作为重点研究项目,企业界也纷纷斥以巨资,从事燃料电池技术的研究与开发,现在已取得了许多重要成果,使得燃料电池即将取代传统发电机及内燃机而广泛应用于发电及汽车上。
值得注意的是这种重要的新型发电方式可以大大降低及解决电力供应、电网调峰问题,2MW、4.5MW、11MW 成套燃料电池发电设备已进入商业化生产,各等级的燃料电池发电厂相继在一些发达国家建成。
燃料电池的发展创新将如百年前内燃机技术突破取代人力造成工业革命,也像电脑的发明普及取代人力的运算绘图及文书处理的电脑革命,又如网络通讯的发展改变了人们生活习惯的信息革命。
燃料电池的高效率、无污染、建设周期短、易维护以及低成本的潜能将引爆21世纪新能源与环保的绿色革命。
如今,在、日本和欧洲,燃料电池发电正以急起直追的势头快步进入工业化规模应用的阶段,将成为21世纪继、水电、后的第四代发电方式。
燃料电池技术在国外的迅猛发展必须引起我们的足够重视,现在它已是能源、电力行业不得不正视
的课题。
化学是你,化学是我。
化学在我们生活中很多重要方面起着举足轻重的作用。
化学的发展往往代表着人类科技和社会的整体发展。
化学与能源只是其中的冰山一角。
学生会在以后的实践中人站对待化学,对待我们的专业,协调利用好二者之间的关系,学好专业知识,做好本职工作。