数字电路逻辑设计
实
验
报
告
设计题目:
专业班级:
姓名:
学号:
设计课题:四路彩灯显示系统设计
1.设计任务和要求
设计一个四路彩灯控制器,设计要求如下:
(1)接通电源后,彩灯可以自动按预先设置的程序循环闪烁。
(2)设置的彩灯花型由三个节拍组成:
第一节拍:四路彩灯从左向右逐次渐亮,灯亮时间1s,共用4s;
第二节拍:四路彩灯从右向左逐次渐灭,也需4s;
第三节拍:四路彩灯同时亮0.5s,然后同时变暗,进行4次,所需时间也
为4s。
(3)三个节拍完成一个循环,一共需要12s。
一次循环之后重复进行闪烁。
2. 设计分析
四路彩灯既有四路输出,设依次为d Q、c Q、b Q、a Q,若“1”表示灯亮,“0”表示灯灭,由课题要求可知四路彩灯显示系统要求如下表1所示的输出显示。
表1 四路彩灯输出显示
由上表可知,需要一个分频器起节拍产生和控制作用,每4s 一个节拍,3个节拍共12s 后反复循环。
一个节拍结束后应产生一个信号到节拍程序执行器,完成彩灯渐亮、渐灭、同时亮、同时灭等功能。
分频及节拍控制可以用一个模12计数器来完成;彩灯渐亮、渐灭可以用器件的左移、右移功能来实现,因此可选用移位寄存器74194来完成。
同时亮0.5s 、同时灭0.5s 可考虑把1Hz 的秒脉冲信号直接加到输出显示端来完成。
综上所述,要完成四路彩灯显示功能需要有分频器、节拍控制器、节拍程序执行器及脉冲源等电路。
记第一,二,三节拍分别为012Y YY 有效时间应为4秒,0Y 结束1Y 马上开始,1
Y 后2Y 马上开始,如此循环不断。
为此可考虑采用移位寄存器构成的移位型控制器。
由于有三个状态,因此需要用三个触发器对现时状态进行记忆,为使各状态的有效时间间隔为4秒,则驱动该移位控制器动作时钟周期应为4秒。
应在开机瞬间,使移位型控制器的状态被确定下来,即012Y YY 节拍应为100,可控制输入信号使触发器置位、复位来实现。
为实现0Y 功能要求器件具有右移功能,为实现1Y 功能要求器件有左移功能;而且左、右移输入可为“0”也可为“1”;为实现2Y 功能,要求器件同时具有并行置数功能。
因此可选用一种具有左移、右移和并行置数功能的通用移位寄存器74LS194。
74LS194具有并行输入端A 、B 、C 、D ,并行输出端A Q 、B Q 、C Q 、D Q ,右移输入端SR ,左移输入端SL 和模式控制输入端0S ,1S 以及一个无条件直接清除端CLR 。
模式控制输入0S ,1S 有00、01、10、11四种组合方式,分别表示双向移位寄存器所具有的四种功能,即禁止、右移、左移和并行置数。
为了使当
012Y YY =100时,01S S =01(右移),012Y YY =010时,01S S =10(左移),当012Y YY =001时01S S =11(并行置数)。
74LS194的输出端初态均为零,在开机瞬间,使移位控制端01S S 的状态被确
定下来,即 012Y YY
=100时,01S S =01 右移串行数据输入端 SR 经脉冲信号经四分频电路和 通过两或门组成的节拍电路,使四路彩灯从右到左依次亮共 4秒 ,
当012Y YY
=010 01S S =10 左移串行数据输入端 SL 经脉冲信号经四分频电路和 通过两或门组成的节拍电路,使四路彩灯从左到右依次灭共 4秒,012Y YY
=001 01S S =11 并行数据输入端 A 、B 、C 、D 经脉冲信号经四分频电路和 通过两或门组成的节拍电路,使四路彩灯同时为“ 1”0.5秒、同时为“0”0.5秒,重复4遍共4秒,完成一个循环共需12秒,12个CP 脉冲。
3. 设计方案
分析以上设计任务,该控制系统完成如图3-4所示的控制流程,系统结构框图如图3-5所示。
其中脉冲源采用秒脉冲发生器,用以提供频率为1Hz 的时钟信号;分频器将1Hz 的时钟信号四分频,用以产生0.25Hz (即4S )的时钟信号;节拍控制器产生三个节拍循环的控制信号;节拍程序执行器完成在每个节拍下的系统动作,即数据的左移、右移和送数功能,可以使用双向通用移位寄存器74LS194完成;显示电路完成系统循环演示的指示,可以用发光二极管模拟。
系统控制流程图及控制系统结构框图如下图所示:
图1:四路彩灯控制流程图
图2:四路彩灯控制系统结构框图
4. 设计实现
下图为四路彩灯显示的一种简易实现电路。
该电路选用同步十六进制计数器74161实现模12分频及节拍控制,用4位双向移位寄存器74191实现彩灯的渐亮、渐灭功能。
图3:四路彩灯显示系统的一种实现电路
四路彩灯显示系统的工作过程如表2所示。
74161的输出为0123Q QQ Q ;74194的输出为A B C D Q Q Q Q ;四路彩灯的输出为a b c d Q Q Q Q 。
74194的工作方式控制端
132M Q Q =+,032M Q Q =+。
在第一节拍中,1001M M =,74194实现右移功能,即在时钟脉冲作用下,把1SR D =逐次移进;在第二节拍中,1010M M =,74194实现左移功能,即在时钟脉冲作用下,把0SR D =逐次反方向移进。
由于前两个节拍中30Q =,门G 关闭,输出为0,因此四路彩灯的输出a b c d A B C D Q Q Q Q Q Q Q Q =。
在第三节拍中,1010M M =,74194仍然左移,A B C D Q Q Q Q 一直保持为0000。
此时
31Q =,门G 打开,时钟脉冲CP 同时加到四个输出端a b c d Q Q Q Q ,由于CP 是1Hz 秒脉冲,在1s 时间内高电平和低电平持续时间均为0.5s ,因此a b c d Q Q Q Q 实现同时
亮0.5s、同时灭0.5s,在4s内共进行4次。
第三节拍结束后返回第一节拍,如此反复,实现四路彩灯循环显示。
表2 四路彩灯工作过程
5. 四路彩灯系统程序表
6. 设计说明
利用74LS02N 节拍控制器、74LS74D 组成的四分频电路,74LS194D 左右双向移位。
下面是它们的引脚图:
7. 所需器件
74LS74D 5个、74LS194D 1个、74LS02N 2个、74LS05N 2个、开关 1个、时钟源10000 HZ 5V 1个、5V 电压源 1个、探灯4个、导线若干条。
8. EDA仿真电路图
通过EDA仿真,该电路可以实现实验要求的四路彩灯显示系统及其循环。
9. 设计实现功能
系统启动后按开关两次, 自动从初始状态按照规定程序完成3个节拍的循环演示。
第一节拍:四路彩灯从左向右逐次渐亮。
第二节拍:四路彩灯从右向左逐次渐灭。
第三节拍:四路彩灯同时亮,然后同时变暗。
10. 实际电路的连接和调试
按照仿真的电路图和上面芯片的引脚图在面包板上连好线路,经检查无误后,接通电源可看到四个二极管都亮,拔动开关,调好脉冲,观察二极管的变化,可以看到电路和仿真的一样。
11. 设计应用
该设计制作成饰灯,增加彩灯的数量可现实所需要的图形输出,作闪烁灯光使用可应用于商业广告或者霓虹灯和家居装饰品。
12. 参考文献
白静.数字电路与逻辑设计西安电子科技大学出版社,2009.
13. 经验总结
通过本学期对数字电路逻辑设计一书的学习,课程结束后完成了本次课程设计。
在此次课程设计实验中,通过查找资料和网上搜索相关资料,我学会了寄存器的使用方法,熟悉了寄存器的一般应用,基本掌握了数字系统设计和调试的方法。
在这个数字电路中我们可以观测到,当输入“12”个脉冲以后,输出数据回到起始值,12个脉冲构成一组循环,因此,可以把该电路作为一个“12”进制的计数器。
通过本课程设计我基本掌握了数字系统的仿真与设计方法。
使我认识到在实际电路的连接时,要注意每一个引脚的接法,在选双开关时,面板上没有,要引线接双开关。
通过脉冲的调节可观察二极管的变化。
由于实物的连接和电路仿真软件有差别,要经过多次调试才能实现其功能的演示。
通过本次课程设计的学习,更加熟悉电路仿真软件的应用和实现电路的仿真,是一次难得的学习机会。